Skip to main content
Log in

Annealing of AsGa-related defects in LT-GaAs: The role of gallium vacancies

  • Special Issue Paper
  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Abstract

We have studied the annealing properties of AsGa-related defects in layers of GaAs grown at low substrate temperatures (300°C) by molecular beam epitaxy (low temperature[LTx]-GaAs). The concentration of neutral AsGa-related native defects, estimated by infrared absorption measurements, ranges from 2×1019 to 1×1020 cm−3. Slow positron annihilation results indicate an excess concentration of Ga vacancies in LT layers over bulk grown crystals. A sharp annealing stage at 450°C marks a rapid decrease in the AsGa defect concentration. We propose that the defect removal mechanism is the diffusion of AsGa to arsenic precipitates, which is enhanced by the presence of excess VGa. The supersaturated concentration of VGa must also decrease. Hence, the diffusivity of the AsGa defects is time dependent. Analysis of isothermal annealing kinetics gives an enthalpy of migration of 2.0±0.3 eV for the photoquenchable AsGa defects, 1.5±0.3 eV for the VGa, and 1.1±0.3 eV for the nonphotoquenchable defects. The difference in activation enthalpy represents difference energy between an As atom and Ga atom swapping sites with a VGa.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. M. Kaminska, E.R. Weber, Z. Liliental-Weber, R. Leon and Z. Rek,J. Vac. Sci. Technol. B7, 710 (1989).

    Article  CAS  Google Scholar 

  2. M. Kaminska, Z. Liliental-Weber, E.R. Weber, T. George, J.B. Kortright, F.W. Smith, B.-Y. Tsaur and A.R. Calawa,Appl Phys. Lett. 54, 1881 (1989).

    Article  CAS  Google Scholar 

  3. M.R. Melloch, N. Otsuka, J.M. Woodall and A.C. Warren,Appl. Phys. Lett. 57, 1531 (1990).

    Article  CAS  Google Scholar 

  4. E.R. Weber and J. Schneider,Physica 116B, 398 (1983).

    Google Scholar 

  5. R. Coates and E.W.J. Mitchell,Adv. in Phys. 24, 593 (1975).

    Article  CAS  Google Scholar 

  6. D.E. Bliss, W. Walukiewicz, J.W. Ager III, E.E. Haller and K.T. Chan,J. Appl. Phys. 71, 1699 (1992).

    Article  CAS  Google Scholar 

  7. M.O. Manasreh, D.C. Look, K.R. Evans, C.E. Stutz,Phys. Rev B 41, 10272 (1990).

    Article  CAS  Google Scholar 

  8. G.M. Martin,Appl. Phys. Lett. 39, 747 (1981).

    Article  CAS  Google Scholar 

  9. J.-L. Lee, A. Uedono and S. Tanigawa,J. Appl. Phys. 67, 6153 (1990).

    Article  CAS  Google Scholar 

  10. F.S. Ham,J. Phys. Chem. Solids 6, 335 (1958).

    Article  CAS  Google Scholar 

  11. M.v. Smoluchowski,Physik. Zeitschr. 17, 585 (1916).

    Google Scholar 

  12. J.W. Farmer and D.C. Look.Phys. Rev. B 21, 3389 (1980).

    Article  CAS  Google Scholar 

  13. J.L. Rouviere, Y. Kim, J. Cunningham, J.A. Rentschler, A. Bourret and A. Ourmazd,Phys. Rev. Lett. 68, 2798 (1992).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bliss, D.E., Walukiewicz, W. & Haller, E.E. Annealing of AsGa-related defects in LT-GaAs: The role of gallium vacancies. J. Electron. Mater. 22, 1401–1404 (1993). https://doi.org/10.1007/BF02649985

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02649985

Key words

Navigation