Skip to main content
Log in

Effect of bainite transformation and retained austenite on mechanical properties of austempered spheroidal graphite cast steel

  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

Austempered ductile iron (ADI) has excellent mechanical properties, but its Young's modulus is low. Austempered spheroidal graphite cast steel (AGS) has been developed in order to obtain a new material with superior mechanical properties to ADI. Its carbon content (approximately 1.0 pct) is almost one-third that of a standard ADI; thus, the volume of graphite is also less. Young's modulus of AGS is 195 to 200 GPa and is comparable to that of steel. Austempered spheroidal graphite cast steel has an approximately 200 MPa higher tensile strength than ADI and twice the Charpy absorbed energy of ADI. The impact properties and the elongation are enhanced with increasing volume fraction of carbon-enriched retained austenite. At the austempering temperature of 650 K, the volume fraction of austenite is approximately 40 pct for 120 minutes in the 2.4 pct Si alloy, although it decreases rapidly in the 1.4 pct Si alloy. The X-ray diffraction analysis shows that appropriate quantity of silicon retards the decomposition of the carbon-enriched retained austenite. For austempering at 570 K, the amount of the carbon-enriched austenite decreases and the ferrite is supersaturated with carbon, resulting in high tensile strength but low toughness.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. M. Johansson:Trans. Am. Foundrymen's Soc., 1977, vol. 85, pp. 117–22.

    CAS  Google Scholar 

  2. T. Watmough and M.J. Malaresta:Trans. Am. Foundrymen's Soc., 1984, vol. 92, pp. 83–99.

    CAS  Google Scholar 

  3. B. Kovacs:Trans. Am. Foundrymen's Soc., 1991, vol. 99, pp. 281–86.

    CAS  Google Scholar 

  4. M. Gagné:Trans. Am. Foundrymen's Soc., 1987, vol. 95, pp. 523–32.

    Google Scholar 

  5. D.J. Moore, T.N. Rouns, and K.B. Rundman:Trans. Am. Foundrymen's Soc., 1987, vol. 95, pp. 765–74.

    CAS  Google Scholar 

  6. G.P. Faubert, D.J. Moore, and K.B. Rundman:Trans. Am. Foundrymen's Soc., 1991, vol. 99, pp. 551–61.

    CAS  Google Scholar 

  7. Masao Homma, Horoshi Meguro, Akira Minato, and Yoshihiko Abe:Imono (J. Jpn. Foundrymen's Soc), 1959, vol. 31, pp. 9–19.

    Google Scholar 

  8. W.B. Larson, C.F. Joseph, F.J. Webbere, and R.F. Thomson:Modern Castings, 1959, vol. 35(3), pp. 47–52 and 134.

    Google Scholar 

  9. Tohei Ototani, Yasuhiro Morooka, and Yasuzi Kataura:Nippon Kinzoku Gakkaishi (J. Jpn. Inst. Met.), 1962, vol. 26, pp. 456–61.

    Google Scholar 

  10. B.D. Cullity:Elements of X-ray Diffraction, 2nd ed., Addison-Wesley Publishing Co., Reading, MA, 1978, pp. 369–420.

    Google Scholar 

  11. Residual Stress Measurement by X-ray Diffraction-SAE J784a, Society of Automotive Engineers, Warrendale, PA, 1971, pp. 50–52.

  12. R.A. Young and D.B. Wiles:J. Appl. Cryst., 1982, vol. 15, pp. 430–38.

    Article  CAS  Google Scholar 

  13. Toshio Takahashi and Toshihiko Abe:Imono (J. Jpn. Foundrymen's Soc), 1993, vol. 65, pp. 87–92.

    CAS  Google Scholar 

  14. Liu Cheng, N.M. van der Pers, A. Böttger, Th.H. de Keijser, and E.J. Mittemeijer:Metall. Trans, A, 1991, vol. 22A, pp. 1957–67.

    CAS  Google Scholar 

  15. H.K.D.H. Bhadeshia and J.W. Christian:Metall. Trans. A, 1990, vol. 21A, pp. 767–97.

    CAS  Google Scholar 

  16. H.K.D.H. Bhadeshia and D.V. Edmons:Metall. Trans. A, 1979, vol. 10A, pp. 895–907.

    CAS  Google Scholar 

  17. Björn Uhrenius:Hardenability Concepts with Applications to Steel, TMS-AIME, Warrendale, PA, 1978, pp. 28–81.

    Google Scholar 

  18. Rodney P. Smith:J. Am. Chem. Soc., 1948, vol. 70, pp. 2724–29.

    Article  CAS  Google Scholar 

  19. B.P.J. Sandvik:Metall. Trans. A, 1982, vol. 13A, pp. 777–87.

    Google Scholar 

  20. Yasuharu Sakuma, David K. Matlock, and George Krauss:Metall. Trans. A, 1992, vol. 23A, pp. 1221–32.

    CAS  Google Scholar 

  21. Yasuharu Sakuma, David K. Matlock, and George Krauss:Metall. Trans. A, 1992, vol. 23A, pp. 1233–41.

    CAS  Google Scholar 

  22. Toshio Takahashi, Shinsuke Kurihana, Shuji Tada, and Toshihiko Abe:Imono (J. Jpn. Foundrymen's Soc.), 1993, vol. 65, pp. 485–90.

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

This article is based on a presentation made during TMS/ASM Materials Week in the symposium entitled “Atomistic Mechanisms of Nucleation and Growth in Solids,” organized in honor of H.I. Aaronson’s 70th Anniversary and given October 3–5, 1994, in Rosemont, Illinois.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Takahashi, T., Abe, T. & Tada, S. Effect of bainite transformation and retained austenite on mechanical properties of austempered spheroidal graphite cast steel. Metall Mater Trans A 27, 1589–1598 (1996). https://doi.org/10.1007/BF02649817

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02649817

Keywords

Navigation