Skip to main content
Log in

Electron microscopic determination of orientation

  • Published:
Metallurgical Transactions Aims and scope Submit manuscript

Abstract

The martensites of titanium binary alloys, containing 1, 2, and 5.3 wt pct Cu, were studied by transmission electron microscopy techniques. Roughly parallel plates with different variants of the orientation relationship, as well as colonies of identical variant plates, prevail in the structures. A stereographic projection analysis of super-imposed diffraction patterns from two adjacent plates is shown to be sufficient for the deduction of the orientation relationship that existed during transformation, which is found to be the Burgers’ relationship -(110)β∥ (0001)α′; 〈111〉β∥ 〈2110〉α′. A graphical method was developed for the derivation of the habit plane and its particular variant, in spite of the absence of retained β phase in quenched Ti-Cu alloys. The habit plane of Ti-Cu martensite is found to be (1079)β with 4 deg accuracy, and to best agree with Class A (α- ω+) solution of the Bowles and Mackenzie theory, rather than with (α+ ω+) or with Class B solutions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A. J. Williams, R. W. Cahn, and C. S. Barrett:Acta Met., 1954, vol. 2, pp. 117–28.

    Article  CAS  Google Scholar 

  2. J. K. Mackenzie and J. S. Bowles:Acta Met., 1957, vol. 5, pp. 137–49.

    Article  Google Scholar 

  3. J. W. Christian:The Theory of Transformations in Metals and Alloys, p. 892, Pergamon, 1965.

  4. Z. Nishiyama, M. Oka, and H. Nakagawa:Trans. Japan Inst. Metals, 1966, vol. 7, pp. 168–73.

    CAS  Google Scholar 

  5. Z. Nishiyama, M. Oka, and H. Nakagawa:Trans. Japan Inst. Metals, 1966, vol. 7, pp. 174–77.

    CAS  Google Scholar 

  6. W. K. Armitage:Iron Steel Inst. Spec. Rep. No. 93, 1965, pp. 76–82.

  7. C. Hammond and P. M. Kelly:Acta Met., 1969, vol. 17, pp. 869–82.

    Article  CAS  Google Scholar 

  8. R. H. Ericksen, R. Taggart, and D. H. Polonis:Acta Met., 1969, vol. 17, pp. 553–64.

    Article  CAS  Google Scholar 

  9. A. G. Crocker:Acta Met., 1965, vol. 13, p. 815.

    Article  Google Scholar 

  10. J. C. Williams, D. H. Polonis, and R. Taggart:The Science, Technology and Application of Titanium, pp. 733–43, Pergamon, 1970.

  11. J. C. Williams, R. Taggart, and D. H. Polonis:Met. Trans., 1970, vol. 1, pp. 2265–70.

    Article  CAS  Google Scholar 

  12. H. M. Otte:The Science, Technology and Application of Titanium, pp. 645–57, Pergamon, 1970.

  13. W. G. Burgers:Physica, 1934, vol. 1, p. 561.

    Article  CAS  Google Scholar 

  14. G. W. Briers, D. W. Dawe, M. A. P. Dewey, and I. S. Brammer:J. Inst. Metals, 1964–65, vol. 93, p. 77.

    Google Scholar 

  15. M. Oka, C. S. Lee, and K. Shimizu:Met. Trans., 1972, vol. 3, pp. 37–45.

    Google Scholar 

  16. Y. C. Liu:J. Metals, 1956, vol. 206, pp. 1036–40.

    Google Scholar 

  17. N. E. Paton and W. A. Backofen:Trans. TMS-AIME, 1969, vol. 245, pp. 1369–70.

    CAS  Google Scholar 

  18. J. C. Bokros and E. R. Parker:Acta Met., 1963, vol. 11, pp. 1291–1301.

    Article  CAS  Google Scholar 

  19. S. Banerjee, S. J. Vijayakar, and R. Krishnan:Substructure of Ti-Zr Martensites, Extended Abstracts-Second International Conference on Titanium, Cambridge, Mass., May 2–5, 1972.

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zangvil, A., Yamamoto, S. & Murakami, Y. Electron microscopic determination of orientation. Metall Trans 4, 467–475 (1973). https://doi.org/10.1007/BF02648699

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02648699

Keywords

Navigation