Skip to main content
Log in

An analysis of plastic instability in pure shear in high strength AISI 4340 steel

  • Published:
Metallurgical Transactions Aims and scope Submit manuscript

An Erratum to this article was published on 01 April 1973

Abstract

The phenomenon of plastic instability in pure shear was studied at room temperature in heat treated high-strength AISI 4340 steels, employing the torsion test. The instability occurs after saturation of strain hardening by the dispersed carbide particles. The strain at onset of instability is sensitively dependent on rate of straining. The effective stress (total stress minus the stress resulting from dispersion hardening) may be a result of Snoek relaxation or the Cottrell drag, depending on strain rate; the magnitude of this stress is linearly proportional to the dissolved carbon content. Experimental observations indicate that instability interfaces advance spirally in the axial direction of the specimen. It is proposed that the interface is stable in a thermodynamic sense and that the driving force for migration depends only on ratio of the speed of the front to the macroscopic strain rate. When the interface becomes stationary, fracture is nucleated at an axial distortion in the interface. Fracture by the instability occurs by a translatory motion of one now rigid body with respect to a second rigid body along the characteristic (slip) surface. Pores may be found in the fracture surface, but these are incidental to the intense flow along the characteristic, and are not the cause of the instability.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J. W. Spretnak: inProc. of The First Int. Conf. on Structural Mechanics in Reactor Technology, Berlin, Sept. 20–24, 1971. To be published.

  2. G. I. Taylor:Proc. Roy. Soc., 1934, vol. A145, p. 1.

    Google Scholar 

  3. F. R. N. Nabarro:Theory of Crystall Dislocations, Clarendon Press, Oxford, 1967.

    Google Scholar 

  4. A. A. Griffith:Phil. Trans. Roy. Soc. London, 1921, vol. A221, p. 163.

    Google Scholar 

  5. J. W. Spretnak:Proc. of the Int. Conf. on the Strength of Metals and Alloys, Suppl. Trans. Japan Inst. Metals, 1968, vol. 9, p. 305.

    CAS  Google Scholar 

  6. R. H. Ernst and J. W. Spretnak:Trans. Iron Steel Inst. Japan, 1969, vol. 9, p. 361.

    Google Scholar 

  7. C. A. Griffis and J. W. Spretnak:Trans. Iron Steel Inst. Japan, 1969, vol. 9, p. 372.

    Google Scholar 

  8. J. H. Bucher, J. T. Cammett, J. C. Jasper, G. W. Powell, and J. W. Spretnak: AFML Report No. TR-65-50, The Ohio State University Research Foundation, March, 1965.

  9. G. T. Hahn:Acta Met., 1962, vol. 10, p. 727.

    Article  Google Scholar 

  10. N.H.Polakowski and S. Mostovoy:Trans. ASM, 1961, vol. 54, p. 567.

    CAS  Google Scholar 

  11. D. V. Wilson and B. Russel:Acta Met., 1959, vol. 7, p. 628.

    Article  CAS  Google Scholar 

  12. G.V. Kurdjumov:J. Iron Steel. Inst., 1960, vol. 195, p. 26.

    Google Scholar 

  13. D. W. Smith and R. F. Hehemann:J. Iron Steel Inst., 1971, vol. 209, p. 476.

    CAS  Google Scholar 

  14. A. M. Turkalo and J. R. Low, Jr.:Trans. TMS-AIME, 1958, vol. 212, p. 750.

    CAS  Google Scholar 

  15. K. Tanaka and T. Mori:Acta Met., 1970, vol. 18, p. 931.

    Article  CAS  Google Scholar 

  16. K. Tanaka: Ph.D. Thesis, Tokyo Institute of Technology, 1970.

  17. M. F. Ashby:Phil. Mag., 1966, vol. 14, p. 1157.

    CAS  Google Scholar 

  18. J. D. Eshelby:Proc. Roy. Soc., 1957, vol. A241, 376.

    Google Scholar 

  19. J. D. Eshelby:Proc. Roy. Soc., 1959, vol. A252, p. 561.

    Google Scholar 

  20. J. W. Spretnak:Trans. TMS-AIME, 1966, vol. 236, p. 1639.

    Google Scholar 

  21. C. A. Griffis: Ph.D. Thesis, The Ohio State University, 1969.

  22. M. J. Roberts and W. S. Owen:Met. Trans., 1970, vol. 1, p. 3203.

    CAS  Google Scholar 

  23. C. Zener:Elasticity and Anelasticity of Metals, The University of Chicago Press, 1948.

  24. J. D. Eshelby:Phil. Mag., 1961, vol. 6, p. 953.

    Google Scholar 

  25. G. Schoeck and A. Seeger:Acta Met., 1959, vol. 7, p. 469.

    Article  CAS  Google Scholar 

  26. A. W. Cochardt, G. Schoeck, and H. Wiedersich:Acta Met., 1955, vol. 3, p. 533.

    Article  CAS  Google Scholar 

  27. D. Polder:Philips Res. Rep., 1945, vol. 1, p. 5.

    CAS  Google Scholar 

  28. A. H. Cottrell and M. A. Jaswon:Proc. Roy. Soc., 1949, vol. A199, p. 104.

    CAS  Google Scholar 

  29. C. A. Wert:Phys. Rev., 1950, vol. 79, p. 601.

    Article  CAS  Google Scholar 

  30. A. Cracknell and J. J. Petch:Acta Met., 1955, vol. 3, p. 186.

    Article  CAS  Google Scholar 

  31. A. R. Rosenfield:Meta. Rev., 1968, p. 29.

  32. K. Tanaka, T. Mori, and T. Nakamura:Phil. Mag., 1970, vol. 21, p. 267.

    Google Scholar 

  33. K. Tanaka, T. Mori, and T. Nakamura:Trans. Iron Steel Inst. Japan, 1971, vol. 11, No. 6, p. 383.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

An erratum to this article is available at http://dx.doi.org/10.1007/BF02645634.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tanaka, K., Spretnak, J. An analysis of plastic instability in pure shear in high strength AISI 4340 steel. Metall Trans 4, 443–454 (1973). https://doi.org/10.1007/BF02648697

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02648697

Keywords

Navigation