Skip to main content
Log in

Elastic Limit and Microplastic Response of Hardened Steels

  • Published:
Metallurgical Transactions A Aims and scope Submit manuscript

Abstract

Tempered martensite-retained austenite microstructures were produced by direct quenching a series of 41XX medium carbon steels, direct quenching and reheating a series of five 0.8C-Cr- Ni-Mo steels and intercritically austenitizing at various temperatures, and quenching a SAE 52100 steel. All specimens were tempered either at 150 °C or at 200 °C. Specimens were subjected to compression and tension testing in the microstrain regime to determine the elastic limits and microplastic response of the microstructures. The retained austenite and matrix carbon content of the intercritically austenized specimens were measured by X-ray diffraction and Mossbauer spectroscopy. The elastic limit of the microstructures decreases with increasing amounts of retained austenite. Refining of the austenite distribution increases the elastic limit. Low elastic limits are mainly due to low flow stresses in the austenite and not internal stresses. The elastic limit correlates with the largest austenite free-mean path by a Hall-Petch type equation. The elastic limit increases with decreasing intercritical austenitizing temperature in the SAE 52100 due to (1) a lower carbon content in the matrix reducing the retained austenite levels and (2) retained carbides that refine grain size and, therefore, the austenite distribution in quenched specimens. The microplastic response of stable austenite-martensite composites may be modeled by a rule of mixtures. In the microplastic region, the strain is accommodated by successively smaller austenite regions until the flow strength matches that of the martensite. Reheating and quenching refines the microstructure and renders the austenite unstable in the microplastic regime, causing transformation of the austenite to martensite by a strain-induced mechanism. The transformation of austenite to martensite occurs by a stress-assisted mechanism in medium carbon steels. The low elastic limits in medium carbon steels were due to the inability of the strain from the stress-assisted transformation of austenite to martensite to balance the plastic strain accumulated in the austenite.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J. Friedel: inElectron Microscopy and Strength of Crystals, G. Thomas and J. Washbum, eds., Interscience Publishers Inc, New York, NY, 1963, pp. 605–47.

    Google Scholar 

  2. C.J. McMahon, Jr.:Advances in Material Research, vol. 2, Microplasticity, Interscience Publishers Inc., New York, NY, 1968, pp. 121–39.

    Google Scholar 

  3. W.C. Leslie:The Physical Metallurgy of Steels, McGraw-Hill, New York, NY, 1981, pp. 4–5.

    Google Scholar 

  4. H. Muir, B.L., Averbach, and M. Cohen:Trans. Am. Soc. Met., 1955, vol. 47, pp. 380–407.

    Google Scholar 

  5. H. Muir:J. Inst. Eng., 1956, June, pp. 161-68.

  6. C.L. Magee and H.W. Paxton:Trans. AIME, 1968, vol. 242, pp. 1766–67.

    CAS  Google Scholar 

  7. C.L. Magee and H.W. Paxton:Trans. AIME, 1968, vol. 242, pp. 1741–65.

    CAS  Google Scholar 

  8. AS. McEvily, R.C. Ku, and T.L. Johnston:Trans. AIME, 1966, vol. 236, pp. 108–14.

    CAS  Google Scholar 

  9. F. Lecroisey and A. Pineau:Metall. Trans., 1972, vol. 3, pp. 387- 96.

    CAS  Google Scholar 

  10. G.B. Olson and M. Azrin:Metall. Trans. A, 1978, vol. 9A, pp. 713–21.

    Article  CAS  Google Scholar 

  11. M.A. Zaccone and G. Krauss:Metall. Trans. A, 1989, vol. 20A, pp. 188–90.

    Article  CAS  Google Scholar 

  12. G.N. Haidemenopoulos, M. Grujicic, G.B. Olson, and M. Cohen:acta Metall., 1989, vol. 37 (6), pp. 1677–82.

    Article  CAS  Google Scholar 

  13. R.H. Richman and R.W. Landgraf:Metall. Trans. A, 1975, vol. 6A, pp. 955–64.

    CAS  Google Scholar 

  14. H. Brandis and W. Schmidt: inCase Hardened Steels: Microstructure and Residual Stress, E.E. Dresburg, ed., AIME, Warrendale, PA, 1984, pp. 182–209.

    Google Scholar 

  15. N. Brown: in tAdvances in Materials Research, vol. 2,Microplasticity, C.J. McMahon, Jr., ed., Interscience Publishers Inc., New York, NY, 1968, pp. 45–73.

    Google Scholar 

  16. C.F. Jatczak, J.A. Larson, and S.W. Shin:Retained Austenite and Its Measurement by X-ray Dittraction, SP-453, Society of Automotive Engineers, Warrendale, PA, 1980.

    Google Scholar 

  17. R.L. Miller:Trans. ASM, 1968, vol. 61, pp. 592–97.

    Google Scholar 

  18. H.P. Klug and L.E. Alexander:X-ray Diffraction Procedures, 2nd ed., Wiley-Interscience, New York, NY, 1974, pp. 272–412.

    Google Scholar 

  19. C.S. Roberts:Trans. AIME, 1953, vol. 191, pp. 203–12.

    Google Scholar 

  20. CA. Stickeis:Metall. Trans. A, 1974, vol. 5A, pp. 865–74.

    Article  Google Scholar 

  21. G. Baozhu, M. Losz, and G. Krauss:Proc. Int. Conf. on Martensite Transformations, Japan Institute of Metals, Sendai, Japan, 1986, pp. 367–74.

    Google Scholar 

  22. W.C. Leslie:The Physical Metallurgy of Steels, McGraw-Hill, New York, NY, 1981, p. 223.

    Google Scholar 

  23. L.J. Ebert:Metall. Trans. A, 1978, vol. 9A, pp. 1537–51.

    Article  CAS  Google Scholar 

  24. R.L. Brown, H.J. Rack, and M. Cohen:Mater. Sci. Eng., 1975, vol. 21, pp. 25–34.

    Article  CAS  Google Scholar 

  25. R.G. Davies:Metall. Trans. A, 1978, vol. 9A, pp. 451–55.

    Article  CAS  Google Scholar 

  26. J.P. Hirth:Metall. Trans., 1972, vol. 3, pp. 3047–67.

    Article  CAS  Google Scholar 

  27. J.D. Embury: inStrengthening Methods in Crystals, A. Kelly and R. Nicholson, eds., Wiley, New York, NY, 1972, pp. 331–401.

    Google Scholar 

  28. C.B. Eckstein and J.R.C. Guimaraes:J. Mater. Sci., 1984, vol. 19, pp. 3043–48.

    Article  CAS  Google Scholar 

  29. K.R. Hayes: M.S. Thesis, Colorado School of Mines, Golden CO, 1985, T-2971.

  30. G.B. Olson:Deformation, Processing and Structure, G. Krauss, ed., ASM Material Science Seminar, ASM INTERNATIONAL, Metals Park, OH, pp. 391-422.

  31. J.V. De Sanden:Pract. Metallogr., 1980, vol. 17, pp. 238–43.

    Article  Google Scholar 

  32. M. Zaccone, B. Kelly, and G. Krauss: inCarburizing: Processing and Performance, G. Krauss, ed., ASM INTERNATIONAL, Metals Park, OH, 1989, July, pp. 249–65.

    Google Scholar 

  33. A.P. Voskamp, R. Osterlund, P.C. Becker, and Ol. Vingsbo:Met. Technot., 1980, Jan., pp. 14-21.

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zaccone, M.A., Krauss, G. Elastic Limit and Microplastic Response of Hardened Steels. Metall Trans A 24, 2263–2277 (1993). https://doi.org/10.1007/BF02648600

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02648600

Keywords

Navigation