Skip to main content
Log in

A comparison of analytical methods for the study of fractional brownian motion

  • Research Articles
  • Published:
Annals of Biomedical Engineering Aims and scope Submit manuscript

Abstract

Fractional Brownian motion (FBM) provides a useful model for many physical phenomena demonstrating long-term dependencies and 1/f-type spectral behavior. In this model, only one parameter is neeessary to describe the complexity of the data,H, the Hurst exponent. FBM is a nonstationary random function not well suited to traditional power spectral analysis however. In this paper we discuss alternative methods for the analysis of FBM, in the context of real-time biomedical signal processing. Regression-based methods utilizing the power spectral density (PSD), the discrete wavelet transform (DWT), and dispersive analysis (DA) are compared for estimation accuracy and precision on synthesized FBM datasets. The performance of a maximum likelihood estimator forH, theoretically the best possible estimator, are presented for reference. Of the regression-based methods, it is found that the estimates provided by the DWT method have better accuracy and precision forH>0.5, but become biased for low values ofH. The DA method is most accurate forH<0.5 for a 256-point data window size. The PSD method was biased for bothH<0.5 andH>0.5.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Akay, M. Wavelets in biomedical engineering.Ann. Biomed. Eng. 23:531–542, 1995.

    Article  PubMed  CAS  Google Scholar 

  2. Bassingthwaighte, J. B., and G. M. Raymond. Evaluation of the dispersional analysis method for fractal time series.Ann. Biomed. Eng. 23:491–505, 1995.

    Article  PubMed  CAS  Google Scholar 

  3. Beran, J. Statistical methods for data with long-range dependence.Statistical Sci. 7:404–427, 1992.

    Google Scholar 

  4. Christini, D. J., A. Kulkarni, S. Rao, E. R. Stutman, F. M. Bennett, J. M. Hausdorff, N. Oriol, and K. R. Lutchen. Influence of autoregressive model parameter uncertainty on spectral estimates of heart rate dynamics. ABME 23:127–134, 1995.

    CAS  Google Scholar 

  5. Daubechies, I. Orthonormal bases of compactly supported wavelets.Comm. Pure Appl. Math. 44:909–996, 1988.

    Article  Google Scholar 

  6. DeBoer, R. W., J. M. Karemaker, and J. Strackee. Comparing spectra of a series of point events particularly for heart rate variability data.IEEE Trans. Biomed. Eng. BME-31: 384–387, 1984.

    Article  CAS  Google Scholar 

  7. Feder, J. Fractals. New York: Plenum Press, 1988, 310 pp.

    Google Scholar 

  8. Flandrin, P. On the spectrum of fractional Brownian motion.IEEE Trans. Inform. Theor. 35:197–199, 1989.

    Article  Google Scholar 

  9. Flandrin, P. Wavelet analysis and synthesis of fractional Brownian motion.IEEE Trans. Inform. Theor. 38:910–917, 1992.

    Article  Google Scholar 

  10. Kaplan, L. M., and C. C. Jay Kuo. Fractal estimation from noisy data via discrete fractional Gaussian noise (DFGN) and the Haar basis.IEEE Trans. Signal Proc. 41:3554–3562, 1993.

    Article  Google Scholar 

  11. Keshner, M. S. 1/f noise.Proc. IEEE 70:212–218, 1982.

    Article  Google Scholar 

  12. Kobayashi, M., and T. Musha. 1/f fluctuation of heartbeat period.IEEE Trans. Biomed. Eng. BME-29:456–457, 1982.

    Article  CAS  Google Scholar 

  13. Lundahl, T., W. J. Ohley, S. M. Kay, and R. Siffert. Fractional Brownian motion: A maximum likelihood estimator and and its application to image texture.IEEE Trans. Med. Imag. MI-5:152–161, 1986.

    CAS  Google Scholar 

  14. Mallat, S. G. A theory for multiresolution signal decomposition: The wavelet representation.IEEE Trans. PAMI 11: 674–693, 1989.

    Google Scholar 

  15. Mandelbrot, B. B., and J. W. Van Ness. Fractional Brownian motions, fractional noises and applications.SIAM Rev. 10:422–437, 1968.

    Article  Google Scholar 

  16. Saul, J. P., P. Albrecht, R. D. Berger, and R. J. Cohen. Analysis of long term heart rate variability: Methods, 1/f scaling and implications.Comp. Cardiol. 14:419–422, 1987.

    Google Scholar 

  17. Schepers, H. E., J. H. G. M. van Beeck, and J. B. Bassingthwaighte. Four methods to estimate the fractal dimension from self-affine signals.IEEE Eng. Med. Biol. Magazine. 11 (June):57–64, 1992.

    Article  Google Scholar 

  18. Tewfik, A. H., and M. Kim. Correlation structure of discrete wavelet coefficients of fractional Brownian motion.IEEE Trans. Inform. Theor. 38:904–909, 1992.

    Article  Google Scholar 

  19. Voss, R. F. Fractals in nature: From characterization to simulation. In: The Science of Fractal Images, edited by H. O. Peitgen and D. Saupe. New York: Springer-Verlag, 1988, pp. 21–70.

    Google Scholar 

  20. Wornell, G. W., and A. V. Oppenheim. Estimation of fractal signals from noisy measurements using wavelets.IEEE Trans. Signal Proc. 40:611–623, 1992.

    Article  Google Scholar 

  21. Yamamoto, Y., and R. L. Hughson. Coarse-graining spectral analysis: New method for studying heart rate variability.J. Appl. Physiol. 71:1143–1150, 1991.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Fischer, R., Akay, M. A comparison of analytical methods for the study of fractional brownian motion. Ann Biomed Eng 24, 537–543 (1996). https://doi.org/10.1007/BF02648114

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02648114

Key words

Navigation