Skip to main content
Log in

Thermal and irradiation-induced phase separation in Fe-Ni based invar-type alloys

  • Published:
Metallurgical Transactions A Aims and scope Submit manuscript

Abstract

We summarize and review critically the existing experimental and theoretical evidence concerning both thermal and irradiation-induced high-temperature miscibility gaps in Fe-Ni based Invar-type alloys. Independent data regarding phase separation are obtained from studies on magnetic, low-expansion Invar-type alloys and model austenitic Fe-Ni based alloys studied for potential nuclear applications. The response of these alloys to long-term thermal aging is found to be inconsistent with that of single-phase alloys predicted by most accepted or proposed phase diagrams. These alloys show anomalies in numerous properties which suggest compositional or magnetic heterogeneities or both. We herein model the kinetics and thermodynamics of spinodal decomposition and nucleation in these alloys under thermal conditions. The absence of models for surface energy and gradient energy in systems with negative departure from ideality severely limits our analysis of the kinetics of both nucleation and spinodal decomposition. We can combine our calculations with those of others and also with experimental studies of decomposition to reach a conclusion that suggests a high-temperature miscibility gap for Fe-Ni alloys in the Invar regime. The gap is found to be very narrow at high temperatures but to be broadened at low temperatures by magnetic effects. Alloys in the Invar composition range have been subjected to a variety of high fluence irradiation treatments in the 725 to 1000 K temperature range. The result in most cases was large-scale decomposition into approximately 25 and 50 pet Ni phases. The apparent miscibility gap under irradiation is much wider than that observed thermally. We discuss these observations in the light of existing theories of irradiation-induced or irradiation-altered alloy decomposition. We conclude that although irradiation-enhanced diffusion speeds up phase separation, other processes must be operating to produce the greatly widened miscibility gap.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. O. Kubaschewski:Iron Binary Phase Diagrams, Springer Verlag, New York, NY, 1982, p. 73.

    Google Scholar 

  2. Y.-Y. Chuang, Y.A. Chang, R. Schmid, and J.-C. Lin:Metall. Trans. A, 1986, vol. 17A, pp. 1361–72.

    CAS  Google Scholar 

  3. D.D. Johnson, F.J. Pinski, J.B. Staunton, B.L. Györffy, and G.M. Stocks: inPhysical Metallurgy of Controlled Expansion Invar-Type Alloys, K.C. Russell and D.F. Smith, eds., TMS, Warrendale, PA, 1990, pp. 3–24.

    Google Scholar 

  4. H.R. Brager and F.A. Garner:Effects of Radiation on Materials: 12th Int. Symp., ASTM STP 870, F.A. Garner and J.S. Perrin, eds., ASTM, Philadelphia, PA, 1985, p. 139.

    Google Scholar 

  5. F.A. Garner, H.R. Brager and J.M. McCarthy:Radiation-Induced Changes in Microstructure, 13th Int. Symp. (Part 1), ASTM STP 955, F.A. Garner, N.H. Packan, and A.S. Kumar, eds., ASTM, Philadelphia, PA, 1987, p. 775.

    Google Scholar 

  6. H.R. Brager, F.A. Garner, and M.L. Hamilton:J. Nucl. Mater., 1985, vol. 133-134, p. 594.

    Article  CAS  Google Scholar 

  7. F.A. Garner, H.R. Brager, M.L. Hamilton, R.A. Dodd, and D.L. Porter:Rad. Eff., 1987, vol. 101, p. 37.

    CAS  Google Scholar 

  8. F.A. Garner and H.R. Brager:Radiation-Induced Changes in Microstructure, 13th Int. Symp. (Part 1), ASTM STP 955, F.A. Garner, N.H. Packan, and A.S. Kumar, eds., ASTM, Philadelphia, PA, 1987, p. 187.

    Google Scholar 

  9. F.A. Garner and A.S. Kumar:Effects of Radiation on Materials: 12th Int. Symp., ASTM STP 870, F.A. Garner and J.S. Perrin, eds., ASTM, Philadelphia, PA, 1986, p. 289.

    Google Scholar 

  10. F.A. Garner, H.R. Brager, R.A. Dodd, and T. Lauritzen:Nucl. Instrum. Methods, Phys. Res., 1986, vol. B 16, p. 244.

    Article  Google Scholar 

  11. R.A. Dodd, F.A. Garner, J-J. Kai, T. Lauritzen, and W.G. Johnston:Radiation-Induced Changes in Microstructure, 13th Int. Symp. (Part 1), ASTM STP 955, F.A. Garner, N.H. Packan, and A.S. Kumar, eds., ASTM, Philadelphia, PA, 1987, p. 788.

    Google Scholar 

  12. J.I. Goldstein, D.B. Williams, J. Zhang, and R. Clarke: inPhys-ical Metallurgy of Controlled Expansion Invar-Type Alloys, K.C. Russell and D.F. Smith, eds., TMS, Warrendale, PA, 1990, pp. 67–84.

    Google Scholar 

  13. M.K. Miller and K.F. Russell: inPhysical Metallurgy of Con-trolled Expansion Invar-Type Alloys, K.C. Russell and D.F. Smith, eds., TMS, Warrendale, PA, 1990, pp. 101–17.

    Google Scholar 

  14. K.B. Reutter, D.B. Williams, and J.I. Goldstein:Geochim. Cosmochim. Acta, 1988, vol. 52, pp. 617–26.

    Article  Google Scholar 

  15. J. Danon, R.B. Scorzelli and E. da Silva:Proc. 48th Meteoritic Society Meeting, Bordeaux, France, 1985, vol. 20 (4), p. 631.

    Google Scholar 

  16. J. Pauleve, A. Chamberod, K. Krebs, and A. Marchand:IEEE Trans., 1966, vol. MAG-2 (3), p. 475.

    Google Scholar 

  17. G. Silverstre, A. Silvent, C. Regnard, and G. Sainfort:J. Nucl. Mater., 1975, vol. 57, p. 125.

    Article  Google Scholar 

  18. H. Monta, A. Chamberod, and S. Steinemann:J. Phys. F: Met. Phys., 1984, vol. 14, p. 3053.

    Article  Google Scholar 

  19. H. Monta, H. Hiroyoshi, H. Fujimori, and Y. Nakagawa:J. Magn. Magn. Mater., 1980, vol. 15–18, p. 1197.

    Google Scholar 

  20. S. Kachi and H. Asano:J. Phys. Soc. Jpn., 1969, vol. 27, p. 536.

    Article  CAS  Google Scholar 

  21. Y. Nakamura:IEEE Trans. Magn., 1976, vol. 12, p. 278.

    Article  Google Scholar 

  22. H. Asano:J. Phys. Soc. Jpn., 1969, vol. 27, p. 542.

    Article  CAS  Google Scholar 

  23. G. Crangle and G.C. Hallam:Proc. R. Soc, 1963, vol. A272, p. 119.

    Google Scholar 

  24. Y. Tino and T. Maeda:J. Phys. Soc. Jpn, 1968, vol. 24, p. 729.

    Article  CAS  Google Scholar 

  25. Metals Handbook, 8th ed., ASM, Metals Park, OH, 1961, vol. 1, p. 817.

  26. Y. Nakagawa, Y. Tanji, H. Monta, H. Hiroyoshi, and H. Fujimori:J. Magn. Magn. Mater., 1979, vol. 10, p. 145.

    Article  CAS  Google Scholar 

  27. D.C. Dean and J.I. Goldstein:Metall. Trans. A, 1986, vol. 17A, pp. 1131–38.

    CAS  Google Scholar 

  28. G. Hausch and H. Warlimont:Acta Metall., 1971, vol. 21, p. 401.

    Google Scholar 

  29. O.A. Khomenko, A.M. Tseytlin, and G.A. Tarnovski:Fiz. Met. Metalloved, 1970, vol. 30, p. 769.

    CAS  Google Scholar 

  30. Y. Shirakawa:Sci. Rep. Tohoku Imp. Univ., 1939, vol. 27, p. 485.

    Google Scholar 

  31. Y. Tanji, Y. Nakagawa, Y. Saito, K. Nishimura, and K. Nakatsuka:Phys. Status Solidi A, 1979, vol. 56, p. 513.

    Article  CAS  Google Scholar 

  32. Y. Tanji, H. Moriya, and Y. Nakagawa:J. Phys. Soc. Jpn., 1978, vol. 45, p. 1244.

    Article  CAS  Google Scholar 

  33. O. Kubaschewski, K.-H. Geiger, and K. Hack:Z. Metallkd., 1977, vol. 68, p. 337.

    CAS  Google Scholar 

  34. A. Wiedenmann, W. Wagner, and H. Wollenberger:Scripta Metall., 1989, vol. 23, pp. 603–05.

    Article  CAS  Google Scholar 

  35. J. Hoyt: Washington State University, Pullman, WA, unpub-lished research, 1990.

  36. K.C. Russell and F.A. Garner: inPhysical Metallurgy of Con-trolled Expansion Invar-Type Alloys, K.C. Russell and D.F. Smith, eds., TMS, Warrendale, PA, 1990, pp. 25–46.

    Google Scholar 

  37. J.W. Cahn:Acta Metall., 1961, vol. 9, pp. 795–801.

    Article  CAS  Google Scholar 

  38. J.W. Cahn and J.E. Hilliard:J. Chem. Phys., 1958, vol. 28, pp. 258–67.

    Article  CAS  Google Scholar 

  39. K.C. Russell:Adv. Coll. Int. Sci., 1980, vol. 13, pp. 205–318.

    Article  CAS  Google Scholar 

  40. R. Becker:Ann. Phys., 1938, vol. 32, pp. 128–45.

    Article  CAS  Google Scholar 

  41. D. Turnbull:Impurities and Imperfections, ASM, Cleveland, OH, 1955, pp. 121–43.

    Google Scholar 

  42. G.W. Castellan:Physical Chemistry, 3rd ed., Benjamin/Cummings, Menlo Park, CA, 1983, p. 321.

    Google Scholar 

  43. F.A. Garner and J.M. McCarthy: inPhysical Metallurgy of Con-trolled Expansion Invar-Type Alloys, K.C. Russell and D.F. Smith, eds., TMS, Warrendale, PA, 1990, pp. 187–206.

    Google Scholar 

  44. A. Wiedenmann, W. Wagner, and H. Wollenberger:J. Less-Common Met., 1988, vol. 45, pp. 47–53.

    Article  Google Scholar 

  45. F.A. Garner and J.J. Laidler:Proc. Workshop on Correlation of Neutron and Charged Particle Damage, CONF-760673, Oak Ridge National Laboratory, Oak Ridge, TN, 1976, p. 177.

    Google Scholar 

  46. L.E. Rehn, P.R. Okamoto, and R.S. Averback:Phys. Rev., 1984, vol. B30, p. 3073.

    Google Scholar 

  47. T.M. Williams, R.M. Boothby, and J.M. Titchmarsh:Compo-sition Redistribution in Irradiated Austenitic Steels and Conse-quent Changes in Microstructure, AERE-R-12492, AERE, Harwell, United Kingdom, 1986.

    Google Scholar 

  48. H.R. Brager and F.A. Garner: inPhase Stability During Irra-diation, J.R. Holland, L.K. Mansur, and D.I. Potter, eds., TMS-AIME, Warrendale, PA, 1981, p. 219.

    Google Scholar 

  49. K.C. Russell:Prog. Mater. Sci., 1984, vol. 28, pp. 229–434.

    Article  CAS  Google Scholar 

  50. A.D. Marwick:J. Phys. F, 1978, vol. 8, p. 1849.

    Article  CAS  Google Scholar 

  51. T.R. Anthony:Acta Metall., 1969, vol. 17, p. 603.

    Article  CAS  Google Scholar 

  52. V.K. Sethi and P.R. Okamoto: inPhase Stability During Irra-diation, J.R. Holland, L.K. Mansur, and D.I. Potter, eds., TMS-AIME, Warrendale, PA, 1981, p. 165.

    Google Scholar 

  53. A.D. Marwick, R.C. Pillar, and M.E. Horten: inDimensional Stability and Mechanical Behavior of Irradiated Metals and Al-loys, British Nuclear Energy Society, London, 1984, vol. 2, p. 11.

    Google Scholar 

  54. F.A. Garner: inPhase Stability During Irradiation, J.R. Holland, L.K. Mansur, and D.I. Potter, eds., TMS-AIME, Warrendale, PA, 1981, p. 165.

    Google Scholar 

  55. W.G. Wolfer, F.A. Garner, and L.E. Thomas: inEffects of Ra-diation on Materials: 11th Conf, ASTM STP 782, H.R. Brager and J.S. Perrin, eds., ASTM, Philadelphia, PA, 1982, p. 1023.

    Google Scholar 

  56. H. Wiedersich, P.R. Okamoto, and N.Q. Lam:J. Nucl. Mater., 1979, vol. 83, p. 98.

    Article  CAS  Google Scholar 

  57. S.I. Maydet and K.C. Russell:J. Nucl. Mater., 1977, vol. 64, p. 101.

    Article  CAS  Google Scholar 

  58. G. Martin:Phys. Rev., 1980, vol. B21, p. 2122.

    Google Scholar 

  59. R. Cauvin and G. Martin:Phys. Rev., 1981, vol. B23, p. 3322.

    Google Scholar 

  60. R. Cauvin and G. Martin:Phys. Rev., 1981, vol. B23, p. 3333.

    Google Scholar 

  61. C. Abromeit and G. Martin: inRadiation Induced Changes in Microstructure, ASTM STP 955, F.A. Garner, N.H. Packan, and A.S. Kumar, eds., ASTM, Philadelphia, PA, 1987, p. 822.

    Google Scholar 

  62. C. Abromeit, V. Naundorf, and H. Wollenberger:J. Nucl. Mater., 1988, vols. 155-57, pp. 1174–78.

    Article  Google Scholar 

  63. K. Krishan and C. Abromeit:J. Phys. F, 1984, vol. 14, p. 1103.

    Article  CAS  Google Scholar 

  64. C. Abromeit and K. Krishan:Acta Metall., 1986, vol. 34, p. 1515.

    Article  CAS  Google Scholar 

  65. K. Krishan and C. Abromeit: inIrradiation-Induced Changes in Microstructure, 13th Int. Symp., F.A. Garner, N.H. Packan, and A.S. Kumar, eds., ASTM, Philadelphia, PA, 1987, p. 809.

    Google Scholar 

  66. C. Abromeit and G. Martin: inNon-Linear Phenomena in Ma-terials Science, G. Martin and L.P. Kieben, eds., Trans. Tech. Publications, Aedermannsdorf, Switzerland, 1988.

    Google Scholar 

  67. S.M. Murphy:Instabilities in Concentrated Alloys under Irra-diation, Harwell Research Report TP1237, AERE, Harwell, United Kingdom, 1987.

    Google Scholar 

  68. F.A. Garner and W.G. Wolfer:J. Nucl. Mater., 1981, vol. 102, p. 143.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

This paper is based on a presentation made in the “G. Marshall Pound Memorial Symposium on the Kinetics of Phase Transformations” presented as part of the 1990 fall meeting of TMS, October 8–12, 1990, in Detroit, MI, under the auspices of the ASM/MSD Phase Transformations Committee.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Russell, K.C., Garner, F.A. Thermal and irradiation-induced phase separation in Fe-Ni based invar-type alloys. Metall Trans A 23, 1963–1976 (1992). https://doi.org/10.1007/BF02647544

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02647544

Keywords

Navigation