Skip to main content
Log in

Bulk diffusion limitations and phase boundary kinetics inferred using specimen resistance change

  • Published:
Metallurgical Transactions Aims and scope Submit manuscript

Abstract

When a gas dissolves into a solid at constant temperature, the electrical resistance of the solid specimen is usually altered in a readily measurable fashion. However, such resistance changes can be simply interpreted in terms of phase boundary kinetic parameters only when bulk diffusion is sufficiently rapid to eliminate solute concentration gradients within the specimen. If this condition isnot fulfilled, inferred kinetic constants must be corrected for the effects of solute diffusion limitations, since the measured resistance is no longer dependent only ontotal gas content, but rather on its spatialdistribution within the specimen. A simple procedure for accomplishing this correction is presented herein, based on the recognition that: i) measured electrical resistance is a particularfunctional of the internal solute distribution, and ii) the latter distribution must at every instant be compatible with the laws governing transient diffusion within the specimen. Illustrative results are presented for the transient engassing of foils or filaments when the resistivity change is linear in local solute concentration. Applications are given to: i) the inference of kinetic parameters from resistance-time data, and ii) the design of kinetic experiments “free” of an appreciable bulk diffusion effect.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. D. E. Rosner and H. D. Allendorf:J. Electrochem. Soc., 1967, vol. 114, pp. 305–14.

    Article  CAS  Google Scholar 

  2. M. Färber and D. M. Ehrenberg:J. Electrochem. Soc. 1952, vol. 99, pp. 427- 34.

    Google Scholar 

  3. M. Boudart, D. F. Ollis, and G. W. Harris:Trans. Farad. Soc.,1969, vol. 65, part 2, no. 554, pp. 519–28.

    Article  CAS  Google Scholar 

  4. D. E. Rosner: inAnnual Reviews of Materials Science, vol. 2, Annual Re- views Inc., Palo Alto, Calif., 1972.

  5. R. M. Barrer:Diffusion in and Through Solids, Cambridge University Press, Cambridge, England, 1941.

    Google Scholar 

  6. C. Wagner: inAdvances in Catalysis, vol. 21, Academic Press, New York, 1970, pp. 323–81 ; and C. Wagner inHeterogeneous Kinetics at Elevated Tem- peratures, G. R. Belton and W. L. Worrell, eds., pp. 101-12, Plenum Press, New York, 1970.

    Google Scholar 

  7. H. J. Grabke: Paper No. 8 inReactions between Gases and Solids, AGARD (NATO) Conf. Proc. No. 52,1970.

  8. G. Hörz and E. Fromm:Z. Metallic, 1970. vol. 61, pp. 819–27.

    Google Scholar 

  9. G. Hörz:Z. Metallk., 1968, vol. 59, pp. 141–44,180-83, 283-88.

    Google Scholar 

  10. W. L. Worrell: inAdvances in High Temperature Chemistry, vol 3, L. Eyring, ed., Academic Press, New York, 1971, pp. 71 -105.

    Google Scholar 

  11. P. Kofstad:High Temperature Oxidation of Metals, chap. 6, J. Wiley and Sons, New York, 1966.

    Google Scholar 

  12. R. W. Powers and M. V. Doyle:J. Appl. Phys., 1969 vol. 30, pp. 514–24.

    Article  Google Scholar 

  13. P. G. Shewmon:Diffusion in Solids, McGraw-Hill New York, 1963.

    Google Scholar 

  14. J. D. Fast:Interaction of Metals and Gases, vol. 1,Thermodynamics and Phase Re- lations, Academic Press, New York, 1965

    Google Scholar 

  15. A. K. Volkov, E. A. Goritskaya, I. N. Kidin, T. M. Rozhnova, and M. A. Shtremel:Phys. Metals Metallog, 1970, vol. 29, pp. 65–72.

    Google Scholar 

  16. R. Burch and F. A. Lewis:Tech. Bull., Engelhard Industries, Newark, N.J., June-Sept. 1966, vol. 7, nos. 1-2, pp. 36–40.

    Google Scholar 

  17. J. Crank:The Mathematics of Diffusion, chap. 6, London: Oxford University Press, London, 1956.

    Google Scholar 

  18. H. S. Carslaw and J. C. Haeger:Conduction of Heat in Solids, Oxford Univer- sity Press, London, 1947.

    Google Scholar 

  19. M Abramowitz and I. A. Segun, eds.:Handbook of Mathematical Functions, Dover Publications, New York, 1965.

    Google Scholar 

  20. C. Wagner: inTechniques of Metals Research, vol. 4, part 1, R. A. Rapp, ed., pp. 1–20, J. Wiley and Sons, New York, 1970.

    Google Scholar 

  21. D. E. Rosner, E. Steinheil, and D. M. McArthur:Initial Engassing Kinetics of Tantalum in Atomic and Diatomic Nitrogen, unpublished research, Yale Uni- versity, New Haven, Conn., 1971.

  22. E. Steinheil and D. E. Rosner:Kinetics and Mechanism of Nitrogen Transfer Reactions in Tantalum, unpublished research, Yale University, New Haven, Conn., 1971-1972.

  23. E. Fromm:J. Vac. Sci. Technol, 1970,vol. l,pp. 100.

    Article  Google Scholar 

  24. C. J. Smithells;Gases and Metals, J. Wiley and Sons, London, 1937.

    Google Scholar 

  25. D. E. Rosner:Proc. 11th Int. Symp. on Combustion; The Combustion Insti- tute, Pittsburgh, Pa., 1967, pp.181–96.

    Google Scholar 

  26. S. Katz:Chem. Eng. Sci., 1959, vol. 10, pp. 202–11.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rosner, D.E. Bulk diffusion limitations and phase boundary kinetics inferred using specimen resistance change. Metall Trans 3, 2493–2499 (1972). https://doi.org/10.1007/BF02647054

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02647054

Keywords

Navigation