Skip to main content
Log in

Thermodynamics of formation of compounds in the Ce-Mg, Nd-Mg, Gd-Mg, Dy-Mg, Er-Mg, and Lu-Mg binary systems in the temperature range 650°to 930°K

  • Published:
Metallurgical Transactions Aims and scope Submit manuscript

Abstract

The vapor pressures of magnesium over a series of two-phase alloys of Mg with Ce, Nd, Gd, Dy, Er, and Lu have been measured by the Knudsen effusion technique in the temperature range 650 to 930 K. These vapor pressure measurements were combined with data concerning the terminal solubility of magnesium in the rare earths and the vapor pressure of pure magnesium to evaluate the standard free energies of formation of the twenty-four intermediate phases in these six binary systems. Trends in the data correlate with the number of unpaired 4f electrons of the lanthanon component, and the inference is that the 4f electrons make a contribution to the bonding interactions. There is also evident a shift in the pattern of the free energies of formation of the phases with the shift occurring as the atomic number of the lanthanon component is increased. This implies modification of the bonding interactions by some additional factor which might be either a size factor or a crystal-environmental dependence of the strength of the 4f bonding contributions. Experiments are proposed to distinguish between the possibilities.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A. Iandelli and A. Palenzona:J. Less-Common Metals, 1965, vol. 9, p. 1,

    Article  CAS  Google Scholar 

  2. K. A. Gschneidner, Jr.:Rare Earth Alloys, pp. 199–212 and 19-21, D. van Nostrand Co., Princeton, N. J., 1961.

    Google Scholar 

  3. P. I. Kripyakevich and V. I. Evdokimenko:Vopr. Teor. Prim. Redkozem. Met. (Problems, Theory, and Applications of Rare Earth Metals), E. M. Savitskii and V. F. Terekhova, eds., pp. 146–148, Moscow, 1964.

  4. P. I. Kripyakevich and V. I. Evdokimenko,Z. Anorg. Allg. Chem., 1967, vol. 355,p. 104.

    Article  CAS  Google Scholar 

  5. P. I. Kripyakevich, V. I. Evdokimenko, and E. I. Gladyshevskii:Sov. Phys. Cryst., 1964, vol. 9, p. 330.

    Google Scholar 

  6. N. F. Lashko and G. I. Morozova:Sov. Phys.-Cryst., 1964, vol. 9, p. 209.

    Google Scholar 

  7. D. H. Wood and E. M. Cramer:J. Less-Common Metals, 1965, vol. 9, p. 321.

    Article  CAS  Google Scholar 

  8. Q. Johnson and G. S. Smith:Acta Cryst., 1970, vol. B26, p. 434.

    Google Scholar 

  9. Q. Johnson and G. S. Smith:Acta Cryst., 1967, vol. 23, p. 327.

    Article  CAS  Google Scholar 

  10. P. I. Kripyakevich and V. I. Evdokimenko:Visn. L’viv. Derzh. Univ., Ser. Khim., 1969, no. 11, p. 3.

  11. J. F. Smith, D. M. Bailey, D. B. Novotny, and J. E. Davison:Acta Met., 1965, vol. 13, p. 889.

    Article  CAS  Google Scholar 

  12. E. M. Savitskii, V. F. Terekhova, I. M. Burov. and I. A. Markova:Zh. Neorg. Khim. (Russian J. Inorg. Chem.), 1961, vol. 6, p. 885.

    Google Scholar 

  13. F. Gaume-Mahn:Bull. Soc. Chim. France, 1954, p. 569.

  14. W. J. James, J. S. Shab, D. Givord, R. Lemaire, and J. M. Moreau: Program and Abstracts, Amer. Cryst. Assn. Summer Meeting, Aug. 15–20,1971. Iowa State Univ., Ames, Iowa.

  15. W. Biltz and H. Peiper:Z. Anorg. Chem., 1924, vol. 134, p. 13.

    Article  CAS  Google Scholar 

  16. G. Canneri and A. Rossi:Gazz. Chim Ital., 1932, vol. 62, p. 202.

    CAS  Google Scholar 

  17. G. Canneri and A. Rossi:Gazz. Chim. Ital., 1933, vol. 63, p. 182.

    CAS  Google Scholar 

  18. J. R. Ogren, N. J. Magnani, and J. F. Smith:Trans., TMS-AIME, 1967, vol. 239, p. 766.

    CAS  Google Scholar 

  19. V. Burov, V. F. Terekhova, and E. M. Savitskii:Vopr. Teor. Prim. Redkozem. Met. (Problems, Theory, and Applications of Rare Earth Metals), E. M. Savit- skii and V. F. Terekhova, eds., pp. 116-23, Moscow, 1964.

  20. R. R. Joseph and K. A. Gschneidner, Jr.:Trans. TMS-AIME, 1965, vol. 233, p. 2063.

    CAS  Google Scholar 

  21. A. E. Miller and A. H Daane:Trans. TMS-AIME, 1964, vol. 230, p. 568.

    CAS  Google Scholar 

  22. E. M. Savitskii, V. F. Terekhova, and O. P. Naumkin:Tsvetn. Metal., 1960, vol. 33, p. 43.

    CAS  Google Scholar 

  23. M. E. Drits, Z. A. Sviderskaya, and L. L. Rokhlin:Metallurgiya, Metallovedeni, Fiz.-Khim. Metody Issledovaniya, 1963, vol. 12, p. 143.

    Google Scholar 

  24. M. Knudsen:Ann. Phys., 1909, vol. 28, p. 999.

    Article  CAS  Google Scholar 

  25. J. F. Smith and R. L. Smythe:Acta. Met., 1959, vol. 7, p. 261.

    Article  CAS  Google Scholar 

  26. R. Vogel and T. Heumann:Z. Metallic, 1947, vol. 38, p. 1.

    Google Scholar 

  27. K. A. Gschneidner, Jr.:J. Less-Common Metals, 1971, vol. 25, p. 422.

    Article  Google Scholar 

  28. W. B. Pearson:J. Metals, 1970, vol. 22, no. 4, p. 51.

    CAS  Google Scholar 

  29. P. W. Bridgman:The Physics of High Pressure, p. 167, G. Bell and Sons, Ltd., London, 1931.

    Google Scholar 

  30. J. F. Smith:Nuc. Met., 1964, vol. 10, p. 397.

    Google Scholar 

  31. K. A. Gschneidner, Jr.:Solid State Phys., 1964, vol. 16, p. 275.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

J.E. PAHLMAN, Formerly Graduate Student, Department of Metallurgy, Iowa State University, Ames, Iowa

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pahlman, J.E., Smith, J.F. Thermodynamics of formation of compounds in the Ce-Mg, Nd-Mg, Gd-Mg, Dy-Mg, Er-Mg, and Lu-Mg binary systems in the temperature range 650°to 930°K. Metall Trans 3, 2423–2432 (1972). https://doi.org/10.1007/BF02647045

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02647045

Keywords

Navigation