Skip to main content
Log in

Effect of threshold stress intensity on fracture mode transitions for hydrogen-assisted cracking in AISI 4340 steel

  • Published:
Metallurgical Transactions A Aims and scope Submit manuscript

Abstract

Fracture mode transition in hydrogen-assisted cracking (HAC) of AISI 4340 steel has been studied from an equilibrium aspect at room temperature with 8.6-mm-thick double cantilever beam (DCB) specimens. The threshold stress intensity,K th , necessary for the occurrence of HAC and the corresponding fracture surface morphology have been determined as a function of hydrogen pressure and yield strength. The K th increases with decrease in hydrogen pressure at a given yield strength and also with decrease in yield strength at a given hydrogen pressure. AsK th increases, the corresponding HAC fracture mode changes from the intergranular (IG) and quasi-cleavage (QC) modes to the microvoid coalescence (MVC) mode. The experimental results indicate that the critical hydrogen concentration for crack extension in the IG mode is higher than that for crack extension in the MVC mode. The fracture mode transition with varying hydrogen pressure and yield strength is discussed by simultaneously considering the micromechanisms for HAC and the hydrogen pressure and yield strength dependencies ofK th .

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Y. Takeda and C.J. McMahon, Jr.:Metall. Trans. A, 1981, vol. 12A, pp. 1255–66.

    Google Scholar 

  2. Y. H. Kim and J. W. Moms, Jr.:Metall. Trans. A, 1983, vol. 14A, pp. 1883–88.

    CAS  Google Scholar 

  3. M. Gao, M. Lu, and R. P. Wei:Metall. Trans. A, 1984, vol. 15A, pp. 735–46.

    CAS  Google Scholar 

  4. C.D. Beachem:Metall. Trans., 1972, vol. 3, pp. 437–51.

    CAS  Google Scholar 

  5. W. W. Gerberich, Y. T. Chen, and C. St. John:Metall. Trans. A, 1975, vol. 6A, pp. 1485–98.

    CAS  Google Scholar 

  6. S. K. Banerji, C.J. McMahon, Jr., and H. C. Feng:Metall. Trans. A, 1978, vol. 9A, pp. 237–47.

    CAS  Google Scholar 

  7. W. W. Gerberich and Y. T. Chen:Metall. Trans. A, 1975, vol. 6A, pp. 271–78.

    CAS  Google Scholar 

  8. R. Thomson:J. Mater. Sci., 1978, vol. 13, pp. 128–42.

    Article  CAS  Google Scholar 

  9. S. V. Nair and J. K. Tien:Metall. Trans. A, 1985, vol. 16A, pp. 2333–40.

    CAS  Google Scholar 

  10. J. Kameda:Acta Metall., 1986, vol. 34, pp. 867–82.

    Article  CAS  Google Scholar 

  11. R. O. Ritchie, W. L. Server, and R. A. Wullaert:Metall. Trans. A, 1979, vol. 10A, pp. 1557–70.

    CAS  Google Scholar 

  12. J. -K. Choi and S.-I. Pyun:J. Mater. Sci., 1990, vol. 25, pp. 246–52.

    Article  CAS  Google Scholar 

  13. R. B. Heady:Corrosion, 1977, vol. 33 (3), pp. 98–107.

    CAS  Google Scholar 

  14. A. R. Troiano:Trans. ASM, 1960, vol. 52, pp. 54–80.

    Google Scholar 

  15. R. A. Oriani and P. H. Josephic:Acta Metall., 1974, vol. 22, pp. 1065–74.

    Article  CAS  Google Scholar 

  16. Y. Kikuta and T. Araki: inHydrogen Effects in Metals, I. M. Bernstein and A. W. Thompson, eds., TMS-AIME, New York, NY, 1981, pp. 309–18.

    Google Scholar 

  17. K. N. Akhurst and T.J. Baker:Metall. Trans. A, 1981, vol. 12A, pp. 1059–70.

    Google Scholar 

  18. J. R. Rice and M. A. Johnson: inInelastic Behavior of Solids, M. F. Kanninen, W. G. Adler, A. R. Rosenfield, and R. I. Jaffee, eds., McGraw-Hill, New York, NY, 1970, pp. 641–72.

    Google Scholar 

  19. J. R. Rice:Corrosion, 1976, vol. 32 (1), pp. 22–26.

    Google Scholar 

  20. D. M. Tracey:J. Eng. Mater. Technol., Trans. ASME, Ser. H, 1976, vol. 98, pp. 146–51.

    Google Scholar 

  21. W. W. Gerberich, T. Livne, X. -F. Chen, and M. Kaczorowski:Metall. Trans. A, 1988, vol. 19A, pp. 1319–34.

    CAS  Google Scholar 

  22. J. P. Hirth:Metall. Trans. A, 1980, vol. 11A, pp. 861–90.

    CAS  Google Scholar 

  23. T. B. Cox and J. R. Low, Jr.:Metall. Trans., 1974, vol. 5, pp. 1457–70.

    Article  CAS  Google Scholar 

  24. A. S. Argon and J. Im:Metall. Trans. A, 1975, vol. 6A, pp. 839–51.

    CAS  Google Scholar 

  25. A. S. Argon, J. Im, and A. Needleman:Metall. Trans. A, 1975, vol. 6A, pp. 815–24.

    CAS  Google Scholar 

  26. A. C. MacKenzie, J. W. Hancock, and D. K. Brown:Eng. Fract. Mech., 1977, vol. 9, pp. 167–88.

    Article  CAS  Google Scholar 

  27. H. K. Birnbaum: inAtomistics of Fracture, R. M. Latanision and J. R. Pickens, eds., Plenum Press, New York, NY, 1983, pp. 733–69.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pyun, SI., Lee, HK. Effect of threshold stress intensity on fracture mode transitions for hydrogen-assisted cracking in AISI 4340 steel. Metall Trans A 21, 2577–2583 (1990). https://doi.org/10.1007/BF02647003

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02647003

Keywords

Navigation