Skip to main content
Log in

An empirical analysis of titanium stress-strain curves

  • Published:
Metallurgical Transactions Aims and scope Submit manuscript

Abstract

Stress-strain curves of titanium of two purity levels were analyzed by a Criissard and Jaoul method that assumes the Ludwik equation υ= υ 0 + kεp n in the form where υ is the true stress andε p the true plastic strain. The analysis shows that High purity titanium conforms to a simpler behavior pattern than commercial purity titanium. In the absence of twinning the deformation behavior of high purity titanium can be described by a single power law, while that of commercial purity titanium is better portrayed in terms of two power laws; one holding for Small strains and the other for large. However, dynamic strain aging produces a single power law description in commercial purity titanium between 400 and 700 K. The Hollomon method was also applied to the data. This analysis was less sensitive to changes in deformation behavior.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. P. Ludwik:Elemente der Technologischen Mechanik, 1909, p. 32, Julius Springer, Berlin.

    Google Scholar 

  2. J. H. Hollomon:AIME Trans., 1945, vol. 162, pp. 268–90.

    Google Scholar 

  3. C. E. Coleman and D. Hardie:J. Inst. Metals, 1966, vol. 94, pp. 387–91.

    CAS  Google Scholar 

  4. J. W. Pugh:Trans. ASM, 1955, vol. 47, pp. 984–1001.

    Google Scholar 

  5. W. B. Morrison and R.L. Miller:Ultrafine Grain Metals, pp. 183–211, Syracuse University Press, Syracuse New York, 1970.

    Google Scholar 

  6. C. Crussard and B. Jaoul:Rev. Metal., 1950, vol. 47, pp. 589–99.

    CAS  Google Scholar 

  7. C. Crussard:Rev. Metal, 1953, vol. 50, pp. 697–710.

    CAS  Google Scholar 

  8. B. Jaoul:J. Mech. Phys. Solids, 1957, vol. 5, pp. 95–114.

    Article  Google Scholar 

  9. S. N. Monteiro and R. E. Reed-Hill:Met. Trans., 1971, vol. 2, pp. 2947–48.

    CAS  Google Scholar 

  10. V. S. Arunachalam, S. Pattanaik, S. N. Monteiro, and R. E. Reed-Hill:Met. Trans., 1972, vol. 3, pp. 1009–11.

    Article  CAS  Google Scholar 

  11. A. M. Garde, A. T. Santhanam, and R. E. Reed-Hill:Acta Met., 1972, vol. 20, pp. 215–20.

    Article  CAS  Google Scholar 

  12. J. W. Edington and R. E. Smallman:Acta Met., 1964 vol. 12, pp. 1313–28.

    Article  CAS  Google Scholar 

  13. J. D. Baird and C. R. MacKenzie:J. Iron Steel Inst., 1964, vol. 202, pp. 427–36.

    CAS  Google Scholar 

  14. A. S. Keh, Y. Nakada and W. C. Leslie:Dislocation Dynamics, A. R. Rosen- field, G. T. Hahn, A. L. Bernent, Jr., and R. I. Jaffee, eds., pp. 381–408, McGraw-Hill Book Co., New York, 1968.

    Google Scholar 

  15. B. J. Brindley and J. T. Barnby:Acta Met., 1966, vol. 14, pp. 1765–80.

    Article  CAS  Google Scholar 

  16. B. A. Wilcox and G. C. Smith:Acta Met., 1964, vol. 12, pp. 371–76.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Monteiro, S.N., Reed-Hill, R.E. An empirical analysis of titanium stress-strain curves. Metall Trans 4, 1011–1015 (1973). https://doi.org/10.1007/BF02645603

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02645603

Keywords

Navigation