Skip to main content
Log in

Low cycle fatigue behavior of Ti-Mn alloys: Fatigue life

  • Published:
Metallurgical Transactions A Aims and scope Submit manuscript

Abstract

The effect of morphology, particle size, β grain size and volume fraction of β, from 0.025 to 1.0, on the low cycle fatigue life of α Ti-Mn alloys, have been studied under total strain control. In general, Widmanstätten plus grain boundary (W+GB) α structures show shorter fatigue lives than equiaxed (E) α structures, and this has been ascribed to the formation of much larger surface cracks and ease of transfer of slip from α to β. For Eα structures, fatigue life increases with decreasing α particle size and when the alloy is single phase β fatigue life increases with decreasing grain size. At high total strains the nearly all α alloy had the longest fatigue life and at lower strains the β alloy, with the higher yield strength, had the longest fatigue life. Fatigue life was correlated with strain hardening. The nearly all α alloy which had the highest strain hardening, over the plastic strains encountered, had the highest fatigue life, while the β alloy, with the lowest strain hardening, had the lowest fatigue life. For a portion of the fatigue life curves, it was found that as the average Baushinger strain (ABS) increased, the Coffin-Manson exponentc decreased. The results are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. L. F. Coffin:Trans. ASME, 1954, vol. 76, p. 931.

    CAS  Google Scholar 

  2. S. S. Manson:Nasa Technical Notes, Washington, DC, 1954, p. 2933.

  3. S. S. Manson and M. H. Hirschberg:Fatigue: An Interdisciplinary Approach, Syracuse University Press, Syracuse, NY, 1964, p. 133.

    Google Scholar 

  4. T. Endo and JoDean Morrow:J. Materials, 1969, vol. 4, p. 159.

    Google Scholar 

  5. L. F. Coffin, Jr. and J. F. Tavcrnelli:Trans. TMS-AIME, 1959, vol. 215, p. 794.

    CAS  Google Scholar 

  6. B. Tomkins:Phil. Mag., 1968, vol. 8, p. 1041.

    Google Scholar 

  7. T. H. Sanders, Jr. and E.A. Starke, Jr.:Metall. Trans. A, 1976, vol. 7A, p. 1407.

    CAS  Google Scholar 

  8. S. Sattar, D. Kellog, H. Oberle, and B. Greene: ASM Report Systems, paper D8-24.4, 1968.

  9. S. J. Ashton and L. H. Chambers:The Science, Technology, and Application of Titanium, Jaffee and Promisil, eds., Pergamon Press, New York, NY, 1970, p. 879.

    Google Scholar 

  10. H. Hoo: M. S. Thesis, New York University, 1973.

  11. J. J. Lucas and P. P. Konieczny:Metall. Trans., 1971, vol. 2, p. 911.

    CAS  Google Scholar 

  12. P. E. Irving and C. J. Beevers:Mat. Sci. Eng., 1974, vol. 14, p. 229.

    Article  CAS  Google Scholar 

  13. P. E. Irving and C. J. Beevers:Metall. Trans., 1974, vol. 5, p. 391.

    CAS  Google Scholar 

  14. J. C. Williams and G. P. Rauscher:The Effect of Processing on Microstructure and Fracture Properties of Ti-6Al-4V, SCTR, Rockwell International, Thousand Oaks, CA, unpublished research, 1978.

    Google Scholar 

  15. J. C. Chesnutt, C. G. Rhodes, and J. E. Williams:ASTM STP 600, 1976, p. 99.

  16. F. C. Holden, H. R. Ogden, and R. I. Jaffee:Trans. AIME, 1954, vol. 200, p. 169.

    Google Scholar 

  17. S. Hayden: M. S. Thesis, New York University, 1973.

  18. Y. Saleh and H. Margolin:Acta Met., 1979, vol. 27, p. 535.

    Article  CAS  Google Scholar 

  19. Y. Saleh and H. Margolin:Metall. Trans. A, 1980, vol. 11A, p. 1295.

    CAS  Google Scholar 

  20. R. W. Landgraf:ASTM STP 467, 1970, p. 3.

  21. C. E. Feltner and P. Beardmore:ibid, p. 77.

  22. M. Gell, G. R. Leverant, and C. H. Wells:ibid, p. 113.

  23. M. Graf and E. Hornbogen:Scripta Met., 1978, vol. 12, p. 147.

    Article  Google Scholar 

  24. A. J. McEvily and R. C. Boettner:Acta Met., 1963, vol. 11, p. 725.

    Article  Google Scholar 

  25. D. H. Avery and W. A. Backofen:Fracture of Solids, John Wiley, New York, NY, 1963, p. 339.

    Google Scholar 

  26. R. C. Boettner, C. Laird, and A. J. McEvily:Trans. TMS-AIME, 1965, vol. 233, p. 379.

    CAS  Google Scholar 

  27. N. S. Stoloff and D. J. Duquette:CRC Critical Reviews in Solid State Sciences, 1974, vol. 4, p. 615.

    CAS  Google Scholar 

  28. R. O. Richie:Metal Sci., 1977, vol. 11, p. 368.

    Google Scholar 

  29. Y. Mahajan and H. Margolin: unpublished research, Polytechnic Inst. of N.Y., 1979.

  30. W. G. Burgers:Physica, 1934, vol. 1, p. 561.

    Article  CAS  Google Scholar 

  31. G. R. Yoder, L. A. Cooley, and T. W. Crooker:J. Eng. Mat. Tech., Trans. ASME, 1979, vol. 101, p. 86.

    Article  CAS  Google Scholar 

  32. S. Hashimoto, S. Miura, and T. Yagi:Scripta Met., 1976, vol. 10, p. 825.

    Article  Google Scholar 

  33. A. W. Sleeswyk and W. S. T. Maathuis:4th Int'l. Conf. Strength of Metals and Alloys, Nancy, France, 1976, vol. 1, p. 356.

    CAS  Google Scholar 

  34. P. Charsley and M. P. E. Desvaux:Mat. Sci. Eng., 1969, vol. 4, p. 210.

    Google Scholar 

  35. C. Bathias and R. M. Pelloux:Metall. Trans., 1973, vol. 4, p. 1265.

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Saleh, Y., Margolin, H. Low cycle fatigue behavior of Ti-Mn alloys: Fatigue life. Metall Trans A 13, 1275–1281 (1982). https://doi.org/10.1007/BF02645511

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02645511

Keywords

Navigation