Skip to main content
Log in

Influence of austenitizing temperature on stress corrosion in 4330m steel—The role of impurity segregation in stress corrosion cracking of high strength steel

  • Published:
Metallurgical Transactions A Aims and scope Submit manuscript

Abstract

Measurements of the threshold stress intensity for stress corrosion cracking (SCC), KISCC, and crack growth rate,da/dt, in distilled water were made, respectively, on bolt-loaded WOL and precracked three-point-bending specimens of a 4330M steel. A significant improvement of resistance to SCC was obtained by increasing quenching temperature and it is due to a reduction of segregated impurities of P and S at prior austenite grain boundaries. Intergranular cracking tendency increases with inter-granular concentration of impurities and the fracture mode changes from intergranular separation along prior austenite grain boundaries to transgranular quasi-cleavage as the segregated impurity becomes low enough. The combined effects of hydrogen and intergranular impurities on reducing intergranular cohesion and the time for approaching the critical concentration of hydrogen are dis-cussed in terms of a dynamic model which takes into account the accumulation of hydrogen ahead of a moving microcrack.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. V. F. Zackay, E. R. Parker, R. D. Goolsby, and W. E. Wood:Nature Phys. Sci., 1972, vol. 236, pp. 108–09.

    CAS  Google Scholar 

  2. G. Clark, R.O. Ritchie, and J.F. Knott:Nature Phys. Sci., 1972, vol. 239, pp. 104–06.

    CAS  Google Scholar 

  3. R.O. Ritchie and J. F. Knott:Metall. Trans., 1974, vol. 5, pp. 782–85.

    CAS  Google Scholar 

  4. W. Wood:Engineering Fracture Mechanics, 1975, vol. 7, pp. 219–34.

    Article  CAS  Google Scholar 

  5. G. Y. Lai, W. E. Wood, R. A. Clark, V. F. Zackay, and E. R. Parker:Metall. Trans., 1974, vol. 5, pp. 1663–70.

    CAS  Google Scholar 

  6. R. O. Ritchie, B. Francis, and W. L. Server:Metall. Trans. A, 1976, vol. 7A, pp. 831–38.

    CAS  Google Scholar 

  7. D.S. McDarmaid:Metals Technology, 1978, vol. 5, pp. 7–16.

    CAS  Google Scholar 

  8. R.O. Ritchie and R.M. Horn:Metall. Trans. A, 1978, vol. 9A, pp. 331–41.

    CAS  Google Scholar 

  9. C. S. Carter:Corrosion, 1969, vol. 25, pp. 423–31.

    CAS  Google Scholar 

  10. J. F. Lessar and W. W. Gerberich:Metall. Trans. A, 1976, vol. 7A, pp. 953–60.

    CAS  Google Scholar 

  11. U.R Padmanabhan and W. E. Wood:Metall. Trans. A, 1983, vol. 14A, pp. 2347–56.

    Google Scholar 

  12. R. P. M. Proctor and H. W. Paxton:Trans. ASM, 1969, vol. 62, pp. 989–99.

    CAS  Google Scholar 

  13. C. J.M Mahon, Jr., C. L. Briant, and S. K. Banerji:Fracture Met. A, 1977, vol. l,pp. 363–85.

    Google Scholar 

  14. C. Leu:Metal Science, 1980, vol. 14, pp. 107–12.

    Article  Google Scholar 

  15. G. T. Burtein and J. Woodward:Metal Science, 1983, vol. 17, pp. 111–16.

    Article  Google Scholar 

  16. Lin Dongliang (T. L. Lin) and Wu Jiangsheng:Acta Metall. Sinica, 1984, vol. 20, pp. A62–70.

    CAS  Google Scholar 

  17. A. H. Ucisik, C. J.M Mahon, Jr., and H. C. Feng:Metall. Trans. A, 1978, vol. 9A, pp. 321–29.

    CAS  Google Scholar 

  18. T. Ogura, A. Makino, and T. Masumoto:J. Japan Inst, of Metals, 1981, vol. 45, pp. 1093–1101.

    CAS  Google Scholar 

  19. B. F. Brown:Theory of Stress Cracking in Alloys, J. C. Scully, ed., Brussels, NATO Scientific Affairs Division, 1971, pp. 186–240.

    Google Scholar 

  20. M. Pourbaix:Theory of Stress Cracking in Alloys, J. C. Scully, ed., Brussels, NATO Scientific Affairs Division, 1971, p. 21.

    Google Scholar 

  21. G.W. Simmons P.S. Pao, and R.P. Wei:Metall. Trans. A, 1978, vol. 9A, pp. 1147–58.

    Google Scholar 

  22. A.J. Kumnick and H.H. Johnson:Acta Metall., 1980, vol. 28, pp. 33–39.

    Article  CAS  Google Scholar 

  23. A.J. Kumnick and H.H. Johnson:Metall. Trans. A, 1975, vol. 6A, pp. 1087–91.

    CAS  Google Scholar 

  24. A.J. Kumnick and H.H. Johnson:Metall. Trans., 1974, vol. 5, pp. 1199–1206.

    CAS  Google Scholar 

  25. Yan Shixin and Jun Wanquan:Acta Metall. Sinica, 1983, vol. 19, pp. 26–30.

    Google Scholar 

  26. C.L. Briant and S.K. Banerji:Int. Metals Rev., 1978, vol. 23, pp. 164–99.

    CAS  Google Scholar 

  27. C.J. McMahon, Jr.:Mater. Sci. Eng., 1976, vol. 25, pp. 233–39.

    Article  CAS  Google Scholar 

  28. J.C. Fisher:Journal of Applied Physics, 1951, vol. 33, pp. 74–77.

    Article  Google Scholar 

  29. R. A. Oriani and D.H. Josephic:Acta Metall., 1974, vol. 22, pp. 1065–74.

    Article  CAS  Google Scholar 

  30. H. P. Van Leeuwen:Corrosion, 1976, vol. 32, pp. 34–37.

    Google Scholar 

  31. J. C. M. Li, R. A. Oriani, and L. W. Z. Darken:Z. Phys. Chem., 1966, vol. 49, pp. 271–90.

    CAS  Google Scholar 

  32. J.P. Hirth:Metall. Trans. A, 1980, vol. 11A, pp. 861–90.

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Formerly with Shanghai Jiao Tong University, Shanghai, China

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lin, D., Wu, J. & Lan, Y. Influence of austenitizing temperature on stress corrosion in 4330m steel—The role of impurity segregation in stress corrosion cracking of high strength steel. Metall Trans A 19, 2225–2231 (1988). https://doi.org/10.1007/BF02645046

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02645046

Keywords

Navigation