Skip to main content
Log in

Diffusion-induced stresses and plastic deformation

  • Published:
Metallurgical Transactions A Aims and scope Submit manuscript

Abstract

Thin-sheet (<0.2 mm thick in the direction of diffusion) Au/Ag couples undergo plastic deformation bending during interdiffusion at 750 and 850°; the Ag-rich side forms the concave surface of a deformed couple. This bending is caused primarily by diffusion-induced stress and can be prevented by either mechanical constraint during diffusion or mass constraint of the couple (thicker in the diffusion direction). Because the atomic radii of gold and silver are essentially equal, the stresses cannot arise from lattice parameter gradients. Rather, they are produced by processes (such as dislocation climb) associated with the annihilation and generation of vacancies which accommodate mass displacements within the diffusion zone. These nonconservative processes produce volume changes and corresponding stresses in the diffusion zone which are opposed in the transverse direction (normal to diffusion flow) by the elastic mass constraint of the outlying (especially nondiffused) regions of the couple, thereby creating transverse bending stresses across the couple. A simplified stress analysis indicates that when mass constraint is sufficiently small, the couple undergoes bending primarily by low-stress creep, the transverse stress in the outer fiber of a bent couple being approximately 1 MPa (150 psi). A much smaller, secondary contributor to bending is mass which is displaced in a directional normal to the diffusion flux, but this bend-producing mass displacement accounts for <1 pct of the total mass displaced by the operation of vacancy sinks and sources in the diffusion zone. Therefore, even in the thinnest, bending couples, nearly all (>99 pct) of the mass displacement is parallel to diffusion and this causes substantial marker shifting in all the (bending and nonbending) couples. This strong preference for mass displacement to occur parallel (rather than normal) to diffusion is consistent with both minimal mass constraint and the operation of vacancy sinks and sources in regions of maximum (vacancy) chemical stress.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. L. C.C. da Silva and R. F. Mehl:Trans. AIME, 1951, vol. 191, p. 155.

    Google Scholar 

  2. R. S. Barnes:Proc. Phys. Soc, 1952, vol. 65B, p. 512.

    CAS  Google Scholar 

  3. J. Bardeen and C. Herring: inAtom Movements, p. 87, ASM, Cleveland, Ohio, 1951.

    Google Scholar 

  4. J. A. Brinkman:Acta Met., 1955, vol. 3, p. 140.

    Article  CAS  Google Scholar 

  5. R. W. Balluffi and L. L. Seigle:Acta Met., 1955, vol. 3, p. 170.

    Article  Google Scholar 

  6. R. W. Balluffi and L. L. Seigle:Acta Met., 1957, vol. 5, p. 449.

    Article  CAS  Google Scholar 

  7. J. Bardeen and C. Herring:Imperfections in Nearly Perfect Crystals, p. 261, John Wiley and Sons, New York, N.Y., 1952.

    Google Scholar 

  8. R. W. Balluffi:Acta Met, 1954, vol. 2, p. 194.

    Article  CAS  Google Scholar 

  9. A. D. Smigelskas and E. O. Kirkendall:Trans. AIME, 1947, vol. 171, p. 130.

    Google Scholar 

  10. V. Y. Doo and R. W. Balluffi:Acta Met., 1958, vol. 6, p. 428.

    Article  CAS  Google Scholar 

  11. J. W. Mathews and W. A. Jesser:J. Vac. Sci. Technol., 1969, vol. 6, no. 4, p. 641.

    Article  Google Scholar 

  12. Y. H. Liu and G. W. Powell:Trans. TMS-AIME, 1967, vol. 239, p. 998.

    CAS  Google Scholar 

  13. H. J. Queisser:J. Appl. Phys., 1961, vol. 32, no. 9, p. 1776.

    Article  CAS  Google Scholar 

  14. S. Prussin:J. Appl. Phys., 1961, vol. 32, no. 10, p. 1876.

    Article  CAS  Google Scholar 

  15. G. H. Schwuttke and H. J. Queisser:J. Appl. Phys., 1962, vol. 33, p. 1540.

    Article  CAS  Google Scholar 

  16. R. J. Jaccodine:Appl. Phys. Lett., 1964, vol. 4, no. 6, p. 114.

    Article  CAS  Google Scholar 

  17. M. L. Joshi and F. Wilheim:J. Electrochem. Soc, 1965, vol. 112, p. 185.

    Article  CAS  Google Scholar 

  18. R. A. McDonald, G. G. Ehlenberger, and T. R. Huffman:Solid State Electron., 1966, vol. 9, p. 807.

    Article  CAS  Google Scholar 

  19. W. Czaja:J. Appl. Phys., 1966, vol. 37, p. 3441.

    Article  CAS  Google Scholar 

  20. E. Levine, J. Washburn, and G. Thomas:J. Appl. Phys., 1967, vol. 38, p. 81.

    Article  CAS  Google Scholar 

  21. Ibid,.

    Article  CAS  Google Scholar 

  22. J. L. Lambert:Phys. Status Solidi (a), 1971, vol. 4, p. K33.

    Article  CAS  Google Scholar 

  23. K. V. Ravi:Met. Trans., 1972, vol. 3, no. 5, p. 1311.

    CAS  Google Scholar 

  24. J. W. Matthews and J. L. Crawford:Phil. Mag., 1966, vol. 11, p. 977.

    Google Scholar 

  25. P. S. Ayres: PhD dissertation, Purdue University, Indiana, 1968.

  26. A. Bolk:Acta Met., 1961, vol. 9, p. 632.

    Article  CAS  Google Scholar 

  27. A. J. Goldman, R. W. Jordon, and J. Winter:Trans. TMS-AIME, 1968, vol. 242, p. 295.

    CAS  Google Scholar 

  28. A. Kohn, J. Levasseur, J. Philibert, and M. Wanin:Acta Met., 1970,vol. 18, no. 1, p. 163. See especially their Fig. 9.

    Article  CAS  Google Scholar 

  29. J. E. Reynolds, B. L. Averbach, and Morris Cohen:Acta Met., 1957, vol. 5, p. 29.

    Article  CAS  Google Scholar 

  30. V. Ruth:Trans. TMS-AIME, 1962, vol. 227, p. 778.

    Google Scholar 

  31. M. Hansen:Constitution of Binary Alloys, p. 37, McGraw-Hill, New York, N.Y., 1958.

    Google Scholar 

  32. Y. Quere:Conf. J. Phys. Soc. Jap., 1963, vol. 18, suppl. 111, p. 91.

    CAS  Google Scholar 

  33. D. Jeannotte and E. S. Machlin:Phil. Mag., 1963, vol. 8, p. 1835.

    CAS  Google Scholar 

  34. L. M. Clarebrough, R. L. Segall, M. H. Loretto, and M. E. Hargreaves:Phil. Mag., 1964, vol. 9, p. 377.

    CAS  Google Scholar 

  35. J. L. Ham, R.M. Parke, and A. J. Herzig:Trans. ASM, 1943, vol. 31, p. 849.

    Google Scholar 

  36. T. O. Ziebold and R. E. Ogilvie:Anal. Chem., 1964, vol. 36, no. 2, p. 322.

    Article  CAS  Google Scholar 

  37. V. Ruth and G. W. Powell:Acta Met, 1964, vol. 12, no. 2, p. 264.

    Article  CAS  Google Scholar 

  38. G. W. Powell:Trans. TMS-AIME, 1965, vol. 233, p. 1906.

    CAS  Google Scholar 

  39. B. D. Clay and G. W. Greenwood:Phil. Mag., 1972, vol. 25, no. 2, p. 1201.

    CAS  Google Scholar 

  40. W. A. Johnson:Trans. AIME, 1942, vol. 147, p. 331.

    Google Scholar 

  41. F. Garofalo:Fundamentals of Creep and Creep-Rupture in Metals, p. Ill, MacMillan, New York, N.Y., 1965.

    Google Scholar 

  42. L. J. Cuddy:Met. Trans., 1970, vol. 1, p. 395.

    CAS  Google Scholar 

  43. H. Warlimont:Z. Metallic., 1959, vol. 50, p. 708.

    CAS  Google Scholar 

  44. W. B. Pearson:Lattice Spacings and Structures of Metals and Alloys, vol. 2, p. 80, Pergamon, New York, N.Y., 1967.

    Google Scholar 

  45. O. Kubaschewski and J. A. Catterall:Thermochemical Data of Alloys, p. 65, Pergamon, New York, N.Y., 1956.

    Google Scholar 

  46. F. J. Fraikor and J. P. Hirth:J. Appl. Phys., 1967, vol. 38, no. 5, p. 2312.

    Article  CAS  Google Scholar 

  47. O. D. Sherby and P. M. Burke: inProgress in Materials Science, B. Chalmers and W. Hume-Rothery, eds., vol. 13, no. 7, p. 538, Pergamon, New York, N.Y., 1966.

    Google Scholar 

  48. S. M. Makin, A. H. Rowe, and A. P. LeClaire:Proc. Phys. Soc, London, 1957, vol. B70, p. 545.

    Google Scholar 

  49. W. Seith and W. Kottman:Agnew. Chem., 1952, vol. 64, p. 379.

    Article  CAS  Google Scholar 

  50. S. Timoshenko and J. N. Goodier:Theory of Elasticity, 2nd ed., p. 399, McGraw-Hill, New York, N.Y., 1951.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Formerly Graduate Student, Departmentof Metallurgical Engineering, Ohio State University, Columbus, OH43210

Rights and permissions

Reprints and permissions

About this article

Cite this article

Stevens, D.w., POwell, G.w. Diffusion-induced stresses and plastic deformation. Metall Trans A 8, 1531–1541 (1977). https://doi.org/10.1007/BF02644856

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02644856

Keywords

Navigation