Skip to main content
Log in

Thermodynamics of liquid Fe-C solutions

  • Published:
Metallurgical Transactions Aims and scope Submit manuscript

Abstract

The activity of carbon in liquid iron has been determined at low concentrations by means of the CO-CO2 equilibrium and at high concentrations by the solubility of graphite. At intermediate concentrations there is a broad region in which measurements have not been made because of thermal instability of gas mixtures high in CO. Because of this phenomenon it is suggested that the reported activity coefficients at low concentrations may be in error and are only useful in determining a limiting value at infinite dilution. At temperatures below the melting point of iron, activity coefficients at intermediate concentrations along the liquidus line are calculated from recent measurements of the activity in austenite and of the solidus and liquidus lines of the phase diagram. The results agree fairly well with the data of Richardson and Dennis at higher temperatures. Several interpolation formulae are investigated. Equations are presented which describe the thermodynamic properties of the binary liquid solution at all compositions between the eutectic and 1760°C.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. F. D. Richardson and W. E. Dennis:Trans. Faraday Soc., 1953, vol. 49, pp. 171–80.

    Article  CAS  Google Scholar 

  2. A. Rist and J. Chipman:The Physical Chemistry of Steelmaking, J. F. Elliott, ed., pp. 3–12, John Wiley & Sons Inc., New York, 1958; also inRev. Met., 1956, vol. 53, p. 796.

    Google Scholar 

  3. M. Benz and J.F. Elliott:Trans. TMS-AIME, 1961, vol. 221,pp. 323–31.

    CAS  Google Scholar 

  4. R. A. Buckley and W. Hume-Rothery:J. Iron Steel Inst., 1963, vol. 201, pp. 227–32.

    CAS  Google Scholar 

  5. S. Ban-ya, J. F. Elliott, and J. Chipman:Met. Trans., 1970, vol. 1, pp. 1313–20.

    CAS  Google Scholar 

  6. S. Ban-ya and S. Matoba:Physical Chemistry of Process Metallurgy, G. R. St. Pierre, ed., pp. 373–402, Interscience Publ., New York, 1961.

    Google Scholar 

  7. E. T. Turkdogan, L. E. Leake, and C. R. Masson:ActaMet., 1956, vol. 4, pp. 396–406.

    CAS  Google Scholar 

  8. H.C. Vacher and E.H. Hamilton:AIME Trans., 1931, vol. 95,p. 124.

    Google Scholar 

  9. G. Phragmen and B. Railing:Jernkontorets Ann., 1939, vol. 123, p. 199.

    CAS  Google Scholar 

  10. T. Fuwa and J. Chipman:Trans. TMS-AIME, 1959, vol. 215, pp. 708–16.

    CAS  Google Scholar 

  11. S. Marshall and J. Chipman:ASM Trans., 1942, vol. 30, pp. 695–746.

    CAS  Google Scholar 

  12. J. Chipman:Disc. Faraday Soc., No. 4, 1948, pp. 23–49.

  13. J. Chipman and J. F. Elliott:Electric Furnace Steelmaking, Vol. II, p. 70, Interscience Publishers, New York, 1963.

    Google Scholar 

  14. T. Syu, A. V. Polyakov and A. M. Samarin:Izv. Vysshikh Uchebn Zavendenii, Chern.Met., 1959, no. 11, pp. 3–12.

  15. K. Sanbongi and M. Ohtani:Sci. Repts. Res. Inst. Tohoku Univ., Sendai, Japan, 1953, vol. 5, pp. 263–70.

    CAS  Google Scholar 

  16. J. Chipman:Trans. TMS-AIME, 1967, vol. 239, pp. 1332–36.

    CAS  Google Scholar 

  17. Ref. 13, p. 54.

  18. J. Chipman, R. M. Alfred, L. W. Gott, R. B. Small, D. M. Wilson, C. N. Thomson, D. L. Guernsey, and J. C. Fulton:A.SM. Trans, 1952, vol. 44, pp. 1215–30.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chipman, J. Thermodynamics of liquid Fe-C solutions. Metall Trans 1, 2163–2168 (1970). https://doi.org/10.1007/BF02643430

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02643430

Keywords

Navigation