Skip to main content
Log in

Phase transformation of stainless steel during fatigue

  • Published:
Metallurgical Transactions A Aims and scope Submit manuscript

Abstract

Transformation of austenite during cyclic loading was studied in AISI 301 and 304 alloys whose stability was adjusted by heat treatment and temperature changes. Fatigue life was determined under controlled strain amplitude tension-compression conditions. The amount of transformation to α’ (bcc) martensite was continuously indicated magnetically during testing, and the α’ and ∈ (hcp) phases were observed metallographically at failure. It was found in room temperature testing that at strain amplitudes in excess of 0.4 pct the formation of α’ (bcc) martensite was detrimental to the fatigue life. At 200°F (366 K) the fatigue life of an unstable alloy was increased, while in a completely stable austenitic alloy (20Cr, 6Ni, 9Mn), the life at 200°F (366 K) was less than that at room temperature for the same cyclic strain amplitude. The differing effect of temperature on life of these two types of alloy is attributed to the alteration of the austenite stacking fault energy and the relative free energies of the α’ (bcc), ∈ (hcp) and γ (fcc) phases in the unstable alloys. It has been observed that within the standard composition ranges of the two 300 series stainless steel grades there can be marked differences in the degree of transformation resulting from cyclic loading. This has the implication that for fatigue applications modifications in the specifications for the different grades of stainless would be advantageous.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J. P. Bressanelli and A. Moskowitz:Trans. ASM, 1966, vol. 59, pp. 223–39.

    CAS  Google Scholar 

  2. T. Angel:J. Iron Steel Inst., 1954, vol. 177, pp. 165–72.

    CAS  Google Scholar 

  3. C. Guntner and R. Reed:Trans. ASM, 1962, vol. 55, pp. 399–419.

    CAS  Google Scholar 

  4. D. Neff, T. Mitchell and A. Troiano:Trans. ASM, 1969, vol. 62, pp. 858–62.

    CAS  Google Scholar 

  5. G. Stone and G. Thomas:Met. Trans., 1974, vol. 5, pp. 2095–102.

    Article  CAS  Google Scholar 

  6. B. Cina:Acta Met., 1958, vol. 6, pp. 748–62.

    Article  CAS  Google Scholar 

  7. R. Lagneborg:Acta Met., 1964, vol. 12, pp. 823–43.

    Article  CAS  Google Scholar 

  8. P. Mangonon and G. Thomas:Met. Trans., 1970, vol. 1, pp. 1577–86.

    Article  CAS  Google Scholar 

  9. F. Lecroisey and A. Pineau:Met. Trans., 1972, vol. 3, pp. 387–96.

    Article  CAS  Google Scholar 

  10. G. Chanani, S. Antolovich, and W. Gerberich:Met. Trans., 1972, vol. 3, pp. 2661–72.

    Article  CAS  Google Scholar 

  11. C. Bathias and R. Pelloux:Met. Trans., 1973, vol. 4, pp. 1265–73.

    Article  CAS  Google Scholar 

  12. A. Pineau and R. Pelloux:Met. Trans., 1974, vol. 5, pp. 1103–12.

    Article  CAS  Google Scholar 

  13. G. Chanani and S. Antolovich:Met. Trans., 1974, vol. 5, pp. 217–29.

    CAS  Google Scholar 

  14. C. Altstetter and D. Hennessy:The Microstructure and Design of Alloys, pp. 437–40, Institute of Metals, London, 1974.

    Google Scholar 

  15. J. Breedis and L. Kaufman:Met. Trans., 1971, vol. 2, pp. 2359–71.

    Article  CAS  Google Scholar 

  16. G. Eichelman and F. Hull:Trans. ASM, 1953, vol. 45, pp. 77–104.

    Google Scholar 

  17. D. Brandarkar, V. Zackay, and E. Parker:Met. Trans., 1972, vol. 3, pp. 2619–31.

    Article  Google Scholar 

  18. A. Rosen, R. Jago, and T. Kjer:J. Mater. Sci., 1972, vol. 7, pp. 870–76.

    Article  CAS  ADS  Google Scholar 

  19. R. Smith, M. Hirschberg, and S. Manson: NASA technical note Dl 574, 1963.

  20. R. Landgraf: ASTM, STP 467, pp. 3–36, 1970.

  21. J. Morrow: ASTM, STP 378, pp. 45–87, 1965.

  22. C. Feltner and M. Mitchell: ASTM, STP 465, pp. 27–66, 1970.

  23. L. Coffin:Ann. Rev. Mater. Sci., 1972, vol. 2, pp. 313–48.

    Article  CAS  ADS  Google Scholar 

  24. C. Bathias and R. Pelloux (discussion of Ref. 12):Met. Trans., 1974, vol. 5, pp. 306–07.

    Google Scholar 

  25. R. Karz: Ph.D. dissertation, 1972, University of Illinois, Urbana, Il.

    Google Scholar 

  26. A. Cochardt:Magnetic Properties of Metals and Alloys, pp. 251–79, ASM, Metals Park, Ohio, 1959.

    Google Scholar 

  27. D. Goodchild, W. Roberts, and D. Wilson:Acta Met., 1970, vol. 18, pp. 1137–45.

    Article  CAS  Google Scholar 

  28. J. Breedis and W. Robertson:Acta Met., 1962, vol. 10, pp. 1077–88.

    Article  CAS  Google Scholar 

  29. J. Dash and H. Otte:Acta Met., 1963, vol. 11, pp. 1169–78.

    Article  CAS  Google Scholar 

  30. J. Breedis:Trans. TMS-AIME, 1964, vol. 230, pp. 1583–96.

    CAS  Google Scholar 

  31. M. Holzworth and M. Louthan:Corrosion, 1968, vol. 24, pp. 110–24.

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Formerly a Research Assistant

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hennessy, D., Steckel, G. & Altstetter, C. Phase transformation of stainless steel during fatigue. Metall Trans A 7, 415–424 (1976). https://doi.org/10.1007/BF02642838

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02642838

Keywords

Navigation