Skip to main content
Log in

Biosynthesis and metabolism of jasmonates

  • Thematic Articles
  • Published:
Journal of Plant Growth Regulation Aims and scope Submit manuscript

Abstract

Jasmonates are derived from oxygenated fatty acids via the octadecanoid pathway and characterized by a pentacyclic ring structure. They have regulatory function as signaling molecules in plant development and adaptation to environmental stress. Until recently, it was the cyclopentanone jasmonic acid (JA) that attracted most attention as a plant growth regulator. It becomes increasingly clear, however, that biological activity is not limited to JA but extends to, and may even differ between its many metabolities and conjugates as well as its cyclopentenone precursors. The enzymes of jasmonate biosynthesis and metabolism may thus have a regulatory function in controlling the activity and relative levels of different signaling molecules. Such a function is supprted by both the characteration of loss of function mutants inArabidopsis, and the biochemical characterization of the enzymes themselves.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Abramovitz AS, Massey V. 1976. Interaction of phenols with old yellow enzyme—Physical evidence for charge-transfer complexes. J Biol Chem 251:5327–5336.

    PubMed  CAS  Google Scholar 

  • Agrawal GK, Jwa NS, Shibato J, Han O, Iwahashi H, Rakwal R. 2003. Diverse environmental cues transiently regulateOsOPR1 of the “octadecanoid pathway” revealing its importance in rice defense/stress and development. Biochem. Biophys Res Commun 310:1073–1082.

    PubMed  CAS  Google Scholar 

  • Agrawal GK, Tamogami S, Han O, Iwahashi H, Rakwal R. 2003. Rice octadecanoid pathway. Biochem Biophys Res Commun 317:1–15.

    Google Scholar 

  • Almeras E, Stolz S, Vollenweider S, Raymond P, Mene-Saffrane L, Farmer EE. 2003. Reactive electrophile species activate defense gene expression in Arabidopsis. Plant J 34:205–216.

    PubMed  CAS  Google Scholar 

  • Bachmann A, Hause B, Maucher H, Garbe E, Voros K, Weichert H, Wasternack C, Feussner I. 2002. Jasmonate-induced lipid peroxidation in barley leaves initiated by distinct 13-LOX forms of chloroplasts. Biol Chem 383:1645–1657.

    PubMed  CAS  Google Scholar 

  • Baertschi SW, Ingram CD, Harris TM, Brash AR. 1988. Abosolute configuration of cis-12-oxophytodienoic acid of flaxseed: implications for the mechanism of biosynthesis from the 13(S)-hydroperoxide of linolenic acid. Biochemistry 27:18–24.

    PubMed  CAS  Google Scholar 

  • Bartel B, LeClere S, Magidin M, Zolman BK, 2001. Imputs to the active indole-3-acetic acid pool:De novo synthesis, conjugate hydrolysis, and indole-3-butyric acid β-oxidation. Journal of Plant Growth Regulation 20:198–216.

    CAS  Google Scholar 

  • Behrends W, Engeland K, Kindl H. 1988. Characterization of two forms of the multifunctional protein acting in fatty acid betaoxidation. Arch Biochem Biophys 263:161–169.

    PubMed  CAS  Google Scholar 

  • Beisson F, Koo AJ, Ruuska S, Schwender J, Pollard M, Thelen JJ, Paddock T, Salas JJ, Savage L, Milcamps A, Mhaske VB, Cho Y, Ohlrogge JB. 2003. Arabidopsis genes involved in acyl lipid metabolism. A 2003 census of the candidates, a study of the distribution of expressed sequence tags in organs, and a webbased database. Plant Physiol 132:681–697.

    PubMed  CAS  Google Scholar 

  • Bell E, Mullet JE. 1993. Characterization of anArabidopsis lipoxygenase gene responsive to methyl jasmonate and wounding. Plant Physiol 103:113–1137.

    Google Scholar 

  • Bell E, Creelman RA, Mullet JE. 1995. A chloroplast lipoxygenase is required for wound-induced jasmonic acid accumulation in Arabidopsis. Proc Natl Acad Sci USA 92:8675–8679.

    PubMed  CAS  Google Scholar 

  • Berger, S, Bell E, Mullet JE. 1996. Two methyl jasmonate-insensitive mutants show altered expression of AtVsp in response to methyl jasmonate and wounding. Plant Physiol 111:525–531.

    PubMed  CAS  Google Scholar 

  • Biesgen C, Weiler EW. 1999. Structure and regulation of OPR1 and OPR2, two closely related genes encoding 12-oxophytodienoic acid-10,11-reductases fromArabidopsis thaliana. Planta 208:155–156.

    PubMed  CAS  Google Scholar 

  • Birkett MA, Campbell CA, Chamberlain K, Guerrieri E, Hick AJ, Martin JL, Matthes M, Napier JA, Pettersson J, Pickett JA, Poppy GM, Pow EM, Pye BJ, Smartt LE, Wadhams GH, Wadhams LJ, Woodcock CM. 2000. New roles forcis-jasmone as an insect semiochemical and in plant defense. Proc Natl Acad Sci USA 97:9329–9334.

    PubMed  CAS  Google Scholar 

  • Blechert S, Brodschelm W, Hölder S, Kammerer L, Kutchan TM, Mueller MJ, Xia ZQ, Zenk MH. 1995. The octadecanoic pathway: signal molecules for the regulation of secondary pathways. Proc Natl Acad Sci USA 92:4099–4105.

    PubMed  CAS  Google Scholar 

  • Blechert S, Bockelmann C, Brümmer O, Füßlein B, Gundlach H, Haider G, Hölder S, Kutchan TM, Weiler EW, Zenk MH. 1997. Structural separation of biological activities of jasmonates and related compounds. J Chem Soc Perkin Trans 1:3549-3560.

    Google Scholar 

  • Blechert S, Bockelmann C, Füßlein M, Schrader T Von, Stelmach B, Niesel U, Weiler EW. 1999. Structure-activity analyses reveal the existence of two separate groups of active octadeconoids in elicitation of the tendril-coiling response ofBryonia dioica Jacq. Planta 207:470–479.

    CAS  Google Scholar 

  • Blee E. 1988. Phytooxylipins and plant defense reactions. Prog Lipid Res 37:33–72.

    Google Scholar 

  • Blee E. 2002. Impact of phyto-oxylipins in plant defense. Trends Plant Sci 7:315–322.

    PubMed  CAS  Google Scholar 

  • Block MA, Dome AJ, Joyard J, Douce R. 1983. Preparation and characterization of membrane fractions enriched in outer and inner envelope membranes from spinach chloroplasts. II. Biochemical characterization. J Biol Chem 258:13281–13286.

    PubMed  CAS  Google Scholar 

  • Brash AR. 1999. Lipoxygenases: occurrence, functions, catalysis, and acquisition of substrate. J Biol Chem 274:23679–23682.

    PubMed  CAS  Google Scholar 

  • Breithaupt C, Strassner J, Breitinger U, Huber R, Macheroux P, Schaller A, Clausen T. 2001. X-ray structure of 12-oxophytodienoate reductase 1 provides structural insight into substrate binding and specificity within the family of OYE. Structure 9:419–429.

    PubMed  CAS  Google Scholar 

  • Chandra S, Heinstein PF, Low PS. 1996. Activation of phospholipase A by plant defense elicitors. Plant Physiol 110:979–986.

    PubMed  CAS  Google Scholar 

  • Conconi A, Miquel M, Browse JA, Ryan CA. 1996a. Intraellular levels of free linolenic and linoleic acids increase in tomato leaves in response to wounding. Plant Physiol 111:797–803.

    PubMed  CAS  Google Scholar 

  • Conconi A, Smerdon MJ, Howe GA, Ryan CA. 1996b. the octadecanoid signalling pathway in plants mediates a response to ultraviolet radiation. Nature 383:826–829.

    PubMed  CAS  Google Scholar 

  • Costa CL, Arruda P, Benedetti CE. 2000. AnArabidopsis gene induced by wounding functionally homologous to flavoprotein oxidoreductases. Plant Mol Biol 44:61–71.

    PubMed  CAS  Google Scholar 

  • Creelman RA, Mullet JE. 1997. Biosynthesis and action of jasmonates in plants. Annu Rev Plant Physiol Plant Mol Biol 48:355–381.

    PubMed  CAS  Google Scholar 

  • Crombie L, Morgan DO. 1988. Formation of acylic α-and γ-ketols and 12-oxophytodienoic acid from linolenic acid 13-hydroperoxide by a flax enzyme preparation. Evidence for a single enzyme leading to a common allene epoxide intermediate. J Chem Soc Perkin Trans:558-560.

  • Dathe W, Ronsch H, Preiss A, Schade W, Sembdner G, Schreiber K. 1981. Endogenous plant hormones of the broad bean,vicia faba L. (-)-Jasmonic acid, a plant growth inhibitor in pericarp. Planta 153:530–535.

    CAS  Google Scholar 

  • Deighton N, Muckenschnabel II, Goodman BA, Williamson B. 1999. Lipid peroxidation and the oxidative burst associated with infection ofCapsicum annuum byBotrytis cinerea. Plant J 20:485–492.

    PubMed  CAS  Google Scholar 

  • Demole E, Lederer E, Mercier D. 1962. Isolement et determination de la stucture du jasmonate de methyle, constituant odorant characteristique de l'essence de jasmin. Helv Chim Acta 45:675–685.

    CAS  Google Scholar 

  • Dhondt, S, Geoffroy P, Stelmach BA, Legrand M, Heitz T. 2000. Soluble phospholipase A2 activity is induced before oxylipin accumulation in tobacco mosaic virus-infected tobacco leaves and is contributed by patatin-like enzymes. Plant J 23:431–440.

    PubMed  CAS  Google Scholar 

  • Eastmond PJ, Hooks MA, Williams D, Lange P, Bechtold N, Sarrobert C. Nussaume L, Graham IA. 2000. Promoter trapping of a novel medium-chain acyl-CoA oxidase, which is induced transcriptionally during Arabidopsis seed germination. J Biol Chem 275:34375–34381.

    PubMed  CAS  Google Scholar 

  • Falkenstein E, Groth B, Mithöfer A, Weiler EW. 1991. Methyljasmonate and linolenic acid are potent inducers of tendril coiling. Planta 185:316–322.

    CAS  Google Scholar 

  • Farmer EE, Ryan CA, 1990. Interplant Communication: Airborne methyl jasmonate induces synthesis of proteinase inhibitors in plant leaves. Proc Natl Acad Sci USA 87:7713–7716.

    PubMed  CAS  Google Scholar 

  • Farmer EE, Johnson RR, Ryan CA. 1991. Regulation of expression of proteinase inhibitor genes by methyl jasmonate and jasmonic acid. Plant Physiol 98:995–1002.

    Google Scholar 

  • Farmer EE, Ryan CA. 1992. Octadecanoid-derived signals in plants. Trends Cell Biol 2:236–241.

    PubMed  CAS  Google Scholar 

  • Feussner I, Wasternack C, Kindl H, Kühn H. 1995. Lipoxygenase-catalyzed oxygenation of storage lipids is implicated in lipid mobilization during germination. Proc Natl Acad Sci USA 92:11849–11853.

    PubMed  CAS  Google Scholar 

  • Feussner I, Kühn H, Wasternack C. 1997. Do specific linoleate 13-lipoxygenases initiate β-oxidation? FEBS Lett 406:1–5.

    PubMed  CAS  Google Scholar 

  • Feussner I, Kühn H, Wastermack C. 2001. Lipoxygenase-dependent degradation of storage lipids. Trends Plant Sci 6:268–273.

    PubMed  CAS  Google Scholar 

  • Feussner I, Wasternack C. 2002. The lipoxygenase pathway. Annu Rev Plant Biol 53:275–297.

    PubMed  CAS  Google Scholar 

  • Feys BJF, Benedetti CE, Penfold CN, Turner JG. 1994.Arabidopsis mutants selected for resistance to the phytotoxin coronatine are male sterile, insensitive to methyl jasmonate, and resistant to a bacterial pathogen. Plant Cell 6:751–759.

    PubMed  CAS  Google Scholar 

  • Fox KM, Karplus PA. 1994. Old yellow enzyme at 2 A resolution: overall structure, ligand binding, and comparison with related flavorproteins. Structure 2:1089–1105.

    PubMed  CAS  Google Scholar 

  • Froehlich JE, Itoh A, Howe GA. 2001. Tomato allene oxide synthase and fatty acid hydroperoxide lyase, two cytochrome P450 is involved in oxylipin metabolism, are targeted to different membranes of chloroplast envelope. Plant Physiol 125:306–317.

    PubMed  CAS  Google Scholar 

  • Fulda M, Schnurr J, Abbadi A, Heinz E, Browse J. 2004. Peroxisomal Acyl-CoA synthetase activity is essential for seedling development inArabidopsis thaliana. Plant. Cell 16:394–405.

    PubMed  CAS  Google Scholar 

  • Gerhardt B. 1983. Localization of β-oxidation enzymes in peroxisomes isolated from nonfatty plant tissues. Planta 159:238–246.

    CAS  Google Scholar 

  • Germain V, Rylott EL, Larson TR, Sherson SM, Bechtold N, Carde J-P, Bryce JH, Graham IA, Smith SM. 2001. Requirement for 3-ketoacyl-CoA thiolase-2 in peroxisome development, fatty acid β-oxidation and breakdown of triacylglycerol in lipid bodies ofArabisopsis seedlings. Plant J 28:1–12.

    PubMed  CAS  Google Scholar 

  • Gidda SK, Miersch O, Levitin A, Schmidt J, Wasternack C, Varin L. 2003. Biochemical and molecular characterization of a hydroxyjasmonate sulfotransferase fromArabidopsis thaliana. J Biol Chem 278:17895–17900.

    PubMed  CAS  Google Scholar 

  • Göbel C, Feussner I, Schmidt A, Scheel D, Sanchez-Serrano J, Hamberg M, Rosahl S. 2001. Oxylipin profiling reveals the preferential stimulation of the 9-lipoxygenase pathway in elicitor-treated potato cells. J Biol Chem 276:6267–6273.

    PubMed  Google Scholar 

  • Grechkin AN, Fazilev FN, Mukhtarova LS. 1995. The lipoxygenase pathway in garlic (Allium sativun L.) bulbs: detection of the novel dinivyl ether oxylipins. FEBS Lett 371:159–162.

    PubMed  CAS  Google Scholar 

  • Grechkin AN, Mukhtarova LS, Hamberg M. 2000. The lipoxygenase pathway in tulip (Tulipa gesneriand): detection of the ketol route. Biochem J 352:501–509.

    PubMed  CAS  Google Scholar 

  • Gundlach H, Muller MJ, Kutchan TM, Zenk MH. 1992. Jasmonic acid as a signal transducer in elicitor-induced plant cell cultures. Proc Natl Acad Sci USA 89:2389–2393.

    PubMed  CAS  Google Scholar 

  • Gundlach H, Zenk MH. 1998. Biological activity and biosynthesis of pentacyclic oxylipins: The linoleic acid pathway. Phytochemistry 47:527–537.

    CAS  Google Scholar 

  • Haider G, von Schrader T, Füßlein M, Blechert S, Kutchan TM. 2000. Structure-activity relationships of synthetic analogs of jasmonic acid and coronatine on induction of benzo[c] phenanthridine alkaloid accumulation inEschscholzia californica cell cultures. Biol Chem 381:741–748.

    PubMed  CAS  Google Scholar 

  • Halitschke R, Baldwin IT. 2003. Antisense LOX expression increases herbivore performance by decreasing defense responses and inhibiting growth-related transcriptional reorganization inNicotiana attenuata. Plant J 36:794–807.

    PubMed  CAS  Google Scholar 

  • Hamberg M, Hughes MA. 1988. Fatty acid allene oxides. III. Albumin-induced cyclization of 12, 13(5)-epoxy-9(Z), 11-octadecadienoic acid. Lipids 23:469–475.

    CAS  Google Scholar 

  • Hamberg M, Fahlstadius P. 1990. Allene oxide cyclase: a new enzyme in plant lipid metabolism. Arch Biochem Biophys 276:518–526.

    PubMed  CAS  Google Scholar 

  • Hamberg M. 2000. New cyclopentenone fatty acids formed from linoleic and linolenic acids in potato. Lipids 35:353–363.

    PubMed  CAS  Google Scholar 

  • Harms K, Atzorn R, Brash A, Kühn H, Wasternack C, Willmitzer L, Pena-Cortes H. 1995. Expression of a flax allene oxide synthase cDNA leads to increased endogenous jasmonic acid (JA) levels in transgenic potato plants but not to a corresponding activation of JA-responding genes. Plant Cell 7:1645–1654.

    PubMed  CAS  Google Scholar 

  • Harms K, Ramirez II, Pena-Cortez H. 1998. Inhibition of wound-induced accumulaton of allene oxide synthase transcripts in flax leaves by aspirin and salicylic acid. Plant Physiol 118:1057–1065.

    PubMed  CAS  Google Scholar 

  • Hause B, Stenzel I, Miersch O, Maucher H, Kramell R, Ziegler J, Wasternack C. 2000. Tissue-specific oxylipin signature of tomato flowers: allene oxide cyclase is highly expressed in distinct flower organs and vascular bundles. Plant J 24:113–126.

    PubMed  CAS  Google Scholar 

  • Hause B, Hause G, Kutter C, Miersch O, Wasternack C. 2003a. Enzymes of jasmonate biosynthesis occur in tomato sieve elements. Plant Cell Physiol 44:643–648.

    PubMed  CAS  Google Scholar 

  • Hawkes V, Turner J (2004) “How are signalling pathways involving jasmonate and calcium linked to the wound response in Arabidopsis”. Abstract, International Conference on Arabidopsis Research, Berlin 11–14 July, 2004.

  • Hayashi M, Toriyama K, Kondo M, Nishimura M. 1998. 2,4-Dichlorophenoxybutyric acid-resistant mutants of Arabidopsis have defects in glyoxysomal fatty acid β-oxidation. Plant Cell 10:183–195.

    PubMed  CAS  Google Scholar 

  • He Y, Gan S. 2001. Identical promoter elements are involved in regulation of the OPR1 gene by senescence and jasmonic acid in Arabidopsis. Plant Mol Biol 47:595–605.

    PubMed  CAS  Google Scholar 

  • He Y, Fukushige H, Hildebrand DF, Gan S. 2002. Evidence supporting a role of jasmonic acid in Arabidopsis leaf senescence. Plant Physiol 128:876–884.

    PubMed  CAS  Google Scholar 

  • Hisamatsu Y, Goto N, Hasegawa K, Shigemori H. 2003. Arabidopsides A and B, two new oxylipins fromArabidopsis thaliana. Tearhedron Lett 44:5553–5556.

    CAS  Google Scholar 

  • Howe GA, Lightner J, Browse J, Ryan CA. 1996. An octadecanoid pathway mutant (JL5) of tomato is compromised in signaling for defense against insect attack. Plant Cell 8:2067–2077.

    PubMed  CAS  Google Scholar 

  • Howe GA, Lee GI, Itoh A, Li L, DeRocher AE. 2000. Cytochrome P450-dependent metabolism of oxylipins in tomato. Cloning and expression of allene oxide synthase and fatty acid hydroperoxide lyase. Plant Physiol 123:711–724.

    PubMed  CAS  Google Scholar 

  • Howe GA, Schilmiller AL. 2002. Oxylipin metabolism in response to stress. Curr Opin Plant Biol 5:230–236.

    PubMed  CAS  Google Scholar 

  • Ishiga Y, Funato A, Tachiki T, Toyoda K, Shiraishi T, Yamada T, Ichinose Y. 2002. Expression of the 12-oxophytodienoic acid 10,11-reductase gene in the compatible interaction between pea and fungal pathogen. Plant Cell Physiol 43:1210–1220.

    PubMed  CAS  Google Scholar 

  • Ishiguro S, Kawai-Oda A, Nishida I, Okada K. 2001. Thedefective in anther dehiscencel gene encodes a novel phospholipase A1 catalyzing the initial step of jasmonic acid biosynthesis, which synchronizes pollen maturation, anther dehiscence, and flower opening in Arabidopsis. Plant Cell 13:2191–2209.

    PubMed  CAS  Google Scholar 

  • Ishikawa A, Yoshihara T, Nakamura K. 1994. Jasmonate-inducible expression of a potato cathepsin D inhibitor-GUS gene fusion in tobacco cells. Plant Mol Biol 26:403–414.

    PubMed  CAS  Google Scholar 

  • Itoh A, Schilmiller AL, McCaig BC, Howe GA, 2002. Identification of a jasmonate-regulated allene oxide synthase that metabolizes 9-hydroperoxides of linoleic and linolenic acids. J Biol Chem 277:46051–46058.

    PubMed  CAS  Google Scholar 

  • Iuchi S, Yamaguchi-Shinozaki K, Urao T, Terao T, Shinozaki K. 1996. Novel drought-inducible genes in the highly drought-tolerant cowpea: cloning of cDNAs and analysis of the expression of the corresponding genes. Plant Cell Physiol 37:1073–1082.

    PubMed  CAS  Google Scholar 

  • Jacinto T, McGurl B, Franceschi V, Delano-Freier J, Ryan CA, 1997. Tomato prosystemin promoter confers wound-inducible, vascular bundle-specific expression of the β-glucuronidase gene in transgenic tomato plants. Planta 203:406–412.

    CAS  Google Scholar 

  • Joyard J, Block MA, Douce R. 1991. Molecular aspects of plastid evelope biochemistry. Eur J Biochem 199:489–509.

    PubMed  CAS  Google Scholar 

  • Kelly AA, Froechlich JE, Dormann P. 2003. Distruption of the two digalactosyldiacylglycerol synthase genesDGD1 andDGD2 inArabidopsis reveals the existence of an additional enzyme of galactolipid synthesis. Plant Cell 15:2694–2706.

    PubMed  CAS  Google Scholar 

  • Kessler A, Halitschke R, Baldwin IT. 2004. Silencing the jasmonate cascade: induced plant defenses and insect populations. Science 305:665–668.

    PubMed  CAS  Google Scholar 

  • Koch T, Bandemer K, Boland W. 1997. Biosynthesis ofcis-jasmone: A pathway for the inactivation and the disposal of the plant stress hormone jasmonic acid to the gas phase? Helvetica Chimica Acta 80:838–850.

    CAS  Google Scholar 

  • Koda Y. 1992. The role of jasmonic acid and related compounds in the regulation of plant development. Int Rev Cytol 135:155–199.

    PubMed  CAS  Google Scholar 

  • Koda Y, Kikuta Y. 1992. Wound-induced accumulation of jasmonic acid in tissues of potato tubers. Plant Cell Physiol 35:751–756.

    Google Scholar 

  • Koda Y. 1997. Possible involvement of jasmonates in varous morphogenic events. Physiologia Plantarum 100:639–646.

    CAS  Google Scholar 

  • Kolomiets MV, Hannapel DJ, Chen H, Tymeson M, Gladon RJ. 2001. Lipoxygenase is involved in the control of potato tuber development. Plant Cell 13:613–626.

    PubMed  CAS  Google Scholar 

  • Kramell R, Miersch O, Hause B, Ortel B, Parthier B, Wasternack B. 1997. Amino acid conjugates of jasmonic acid induce jasmonate-responsive gene expression in barley (Hordeum vulgare L.) leaves. FEBS Lett 414:197–202.

    PubMed  Google Scholar 

  • Kramell R, Miersch O, Atzorn R, Parthier B, Wasternack C. 2000. Octadecanoid-derived alteration of gene expression and the “oxylipin signature” in stressed barley leaves. Implications for different signaling pathways. Plant Physiol 123:177–188.

    PubMed  CAS  Google Scholar 

  • Kubigsteltig I, Laudert D, Weiler EW. 1999. Structure and regulation of theArabidopsis thaliana allene oxide synthase gene. Planta 208:463–471.

    PubMed  CAS  Google Scholar 

  • Jug⊎gstektig II, Weiler EW. 2003. Arabidopsis mutants affected in the transcriptional control of allene oxide synthase, the enzyme catalyzing the entrance step in octadecanoid biosynthesis. Planta 217:748–757.

    Google Scholar 

  • Laudert D, Pfannschmidt U, Lottspeich F, Holländer-Czytko H, Weiler EW. 1996. Cloning, molecular and functional characterization ofArabidopsis thaliana allene oxide synthase (CYP74), the first enzyme of the octadecanoid pathway to jasmonates. Plant Mol Biol 31:323–335.

    PubMed  CAS  Google Scholar 

  • Laudert D, Hennig P, Stelmach BA, Müller A, Andert L, Weiler EW. 1997. Analysis of 12-oxo-phytodienoic acid enantiomers in biological samples by capillary gas chromatography-mass spectrometry using cyclodextrin stationary phases. Anal Biochem 246:211–217.

    PubMed  CAS  Google Scholar 

  • Laudert D, Weiler EW. 1998. Allene oxide synthase: A major control pointArabidopsis thaliana octadecanoid signalling. Plant J 15:675–684.

    PubMed  CAS  Google Scholar 

  • Laudert D, Schaller F, Weiler EW. 2000. TransgenicNicotiana tabacum andArabidopsis thaliana plants overexpressing allene oxide synthase. Planta 211:163–165.

    PubMed  CAS  Google Scholar 

  • Li C, Liu G, Xu C, Lee GI, Bauer P, Ling HQ, Ganal MW, Howe GA. 2003 The tomatosuppressor of prosystemin-mediated responses 2 gene encodes a fatty acid desaturase required for the biosynthesis of jasmonic acid and the production of a systemic wound signal for defense gene expression. Plant Cell 15:1646–1661.

    PubMed  CAS  Google Scholar 

  • Li L, Li C, Lee GI, Howe GA. 2002. Distinct roles for jasmonate synthesis and action in the systemic wound response of tomato. Proc Natl Acad Sci USA 99:6416–6421.

    PubMed  CAS  Google Scholar 

  • Li L, Zhao Y, McCaig BC, Wingerd BA, Wang J, Whalon ME, Pichersky E, Howe GA. 2004. The tomato homolog of CORONATINE-INSENSITIVE1 is required for the maternal control of seed maturation, jasmonate-signaled defense responses, and glandular trichome development. Plant Cell 16: 126–143.

    PubMed  CAS  Google Scholar 

  • Lorenzo O, Chico JM, Sanchez-Serrano JJ, Solano R. 2004.JASMONATE-INSENSITIVE1 encodes a MYC transcription factor essential to discriminate between different jasmonate-regulated defense responses in Arabidopsis. Plant Cell 16:1938–1950.

    PubMed  CAS  Google Scholar 

  • Massey, V, Schopfer, LM, Dunham, WR (1984) “On the enigma of Old Yellow Enzyme's spectral properties” In: Bray, RC, Engel, PC, Mayhew, SG (eds.),Flavins and Flavoproteins, Walter de Gruyter & Co, Berlin.

    Google Scholar 

  • Massey V, Schopfer LM. 1986. Reactivity of old yellow enzyme with β-NADPH and other pyridine nucleotide derivatives. J Biol Chem 261:1215–1222.

    PubMed  CAS  Google Scholar 

  • Matsui H, Nakamura G, Ishiga Y, Toshima H, Inagaki Y, Toyoda K, Shiraishi T, Ichinosc Y. 2004. Structure and expression of 12-oxophytodienoate reductase (subgroup I) genes in pea, and characterization of the oxidoreductase activities of their recombinant products. Mol Genet Genomics 271:1–10.

    PubMed  CAS  Google Scholar 

  • Maucher H, Hause B, Feussner I, Ziegler J, Wasternack C. 2000. Allene oxide synthases of barley (Hordeum vulgare cv, Salome): tissue specific regulation in seedling development. Plant J 21:199–213.

    PubMed  CAS  Google Scholar 

  • Maucher H, Stenzel I, Miersch O, Stein N, Prasad M, Zierold U, Schweizer P, Dorer C, Hause B, Wasternack C. 2004. The allene oxide cyclase of barley (Hordeum vulgare L.)-cloning and organ-specific expression. Phytochemistry 65:801–811.

    PubMed  CAS  Google Scholar 

  • McConn M, Browse J. 1996 The critical requirement for linolenic acid is pollen development, not photosynthesis, in anArabidopsis mutant. Plant Cell 8:403–416.

    PubMed  CAS  Google Scholar 

  • McConn M, Creelman RA, Bell E, Mullet JE, Browse J. 1997. Jasmonate is essential for insect defense in Arabidopsis. Proc Natl Acad Sci USA 94:5473–5477.

    PubMed  CAS  Google Scholar 

  • Melan MA, Dong X, Endara ME, Davis KR, Ausubel FM, Peterman TK. 1993. AnArabidopsis thaliana lipoxygenase gene can be induced by pathogens, abscisic acid, and methyl jasmonate. Plant Physiol 101:441–450.

    PubMed  CAS  Google Scholar 

  • Meyer A, Miersch O, Buttner C, Dathe W, Sembdner G. 1984. Occurrence of the plant growth regulator jasmonic acid in plants. J Plant Growth Regul 3:1–8.

    CAS  Google Scholar 

  • Miersch O, Sembdner G, Schreiber K. 1989. Occurrence of jasmonic acid analogues inVicia faba. Phytochemistry 28:339–340.

    CAS  Google Scholar 

  • Miersch O, Kramell R, Parthier B, Wasternack B. 1999. Structure-activity relations of substituted, deleted or stereospecifically altered jasmonic acid in gene expression of barley leaves. Phytochemistry 50:353–361.

    CAS  Google Scholar 

  • Miersch O, Weichert H, Stenzel I, Hause B, Maucher H, Feussner I, Wasternack C. 2004. Constitutive overexpression of allene oxide cyclase in tomato (Lycopersicon esculentum cv. Lukullus) elevates levels of some jasmonates and octadecanoids in flower organs but not in leaves. Phytochemistry 65:847–856.

    PubMed  CAS  Google Scholar 

  • Muckenschnabel I, Williamson B, Goodman BA, Lyon GD, Stewart D, Deighton N 2001. Markers for oxidative stress associated with soft rots in French beans (Phaseolus vulgaris) infected byBotrytis cinerea. Planta 212376–381.

    PubMed  CAS  Google Scholar 

  • Mueller MJ, BrodschelmW, Spannagl E, Zenk MH. 1993. Signaling in the elicitation process is mediated through the octadecanoid pathway leading to jasmonic acid. Proc Natl Acad Sci USA 90:7490–7494.

    PubMed  CAS  Google Scholar 

  • Mueller, MJ. 1997. Enzymes involved in jasmonic acid biosynthesis. Physiol Plant 100:653–663.

    CAS  Google Scholar 

  • Müssig C, Biesgen C, Lisso J, Uwer U, Weiler EW, Altmann T. 2000. A novel stress-inducible 12-oxophytodienoate reductase fromArabidopsis thaliana provides a potential link between brassinosteroid-action and jasmonic-acid synthesis. J Plant Physiol 157:143–152.

    Google Scholar 

  • Narvaez-Vasquez J, Florin-Christensen J, Ryan CA. 1999. Positional specificity of a phospholipase A2 activity induced by wounding, systemin, and oligosaccharide elicitors in tomato leaves. Plant Cell 11:2249–2260.

    PubMed  CAS  Google Scholar 

  • Narvaez-Vasquez J, Ryan CA. 2004. The cellular localization of prosystemin: a functional role for phloem parenchyma in systemic wound signaling. Planta 218:360–369.

    PubMed  CAS  Google Scholar 

  • O'Donnell PJ, Calvert C, Atzorn R, Wasternack C,Leyser HMO, Bowles DJ. 1996. Ethylene as a signal mediating the wound response of tomato plants. Science 274:1914–1917.

    PubMed  Google Scholar 

  • Pan Z, Durst F, Werck-Reichhart D, Gardner HW, Camara B, Cornish K, Backhaus RA. 1995. The major protein of guayule rubber particles is a cytochrome P450. J Biol Chem 70:8487–8494.

    Google Scholar 

  • Parchmann S, Gundlach H, Mueller MJ. 1997. Induction of 12-oxo-phytodienoic acid in wounded plants and elecited plant cell cultures. Plant Physiol 115:1057–1064.

    PubMed  CAS  Google Scholar 

  • Park JH, Halitschke R, Kim HB, Baldwin IT, Feldmann KA, Feyereisen R. 2002. A knock-out mutation in allene oxide synthase results in male sterility and defective wound signal transduction inArabidopsis due to a block in jasmonic acid biosynthesis. Plant J 31:1–12.

    PubMed  Google Scholar 

  • Parthier B. 1991. Jasmonates, new regulators of plant growth and development: many facts and few hypotheses on their actions. Bot Acta 104:446–454.

    CAS  Google Scholar 

  • Preisig-Müller R, Gühnemann-Schäfer K, Kindl H 1994. Domains of the tetrafunctional protein acting in glyoxysomal fatty acid β-oxidation. Demonstration of epimerase and isomerase activities on a peptide lacking hydratase activity. J Biol Chem 269:20475–20481.

    PubMed  Google Scholar 

  • Rance II, Fournier J, Esquerre-Tugaye MT. 1998. The incompatible interaction betweenPhytophthora parasitica var.nicotianae race 0 and tobacco is suppressed in transgenic plants expressing antisense lipoxygenase sequences. Proc Natl Acad Sci USA 95:6554–6559.

    PubMed  CAS  Google Scholar 

  • Reymond P, Farmer EE.1998. Jasmonate and salicylate as global signals for defense gene expression. Curr Opin Plant Biol 1:404–411.

    PubMed  CAS  Google Scholar 

  • Reymond P, Weber H, Damond M, Farmer EE. 2000. Differential gene expression in response to mechanical wounding and insect feeding inArabidopsis. Plant Cell 12:707–719.

    PubMed  CAS  Google Scholar 

  • Richmond TA, Bleecker AB. 1999. A defect in β-oxidation causes abnormal inflorescence development in Arabidopsis. Plant Cell 11:1911–1924.

    PubMed  CAS  Google Scholar 

  • Rowley AF, Kuhn H T.S.1998 Eicosanoids and related compounds in plant and animals. London: Portland Press.

    Google Scholar 

  • Roy S, Pouenat ML, Caumont C, Cariven C, Prevost MC, Esquerre-Tugaye MT. 1995. Phospholipase-activity and phospholipid patterns in tobacco cells treated with fungal elicitor. Plant Science 107:17–25.

    CAS  Google Scholar 

  • Royo J, Leon J, Vancanneyt G, Albar JP, Rosahl S, Ortego F, Castanera P, Sanchez-Serrano JJ. 1999. Antisense-mediated depletion of a potato lipoxygenase reduces wound induction of proteinase inhibitors and increases weight gain of insect pests. Proc Natl Acad Sci USA 96:1146–1151.

    PubMed  CAS  Google Scholar 

  • Ryan CA, Moura DS. 2002. Systemic wound signaling in plants: a new perception. Proc Natl Acad Sci USA 99:6519–6520.

    PubMed  CAS  Google Scholar 

  • Rylott EL, Rogers CA, Gilday AD, Edgell T, Larson TR, Graham IA. 2003. Arabidopsis mutants in short- and medium-chain acyl-CoA oxidase activities accumulate acyl-CoAs and reveal that fatty acid?-oxidation is essential for embryo development. J Biol Chem 278:21370–21377.

    PubMed  CAS  Google Scholar 

  • Sanders PM, Lee PY, Biesgen C, Boone JD, Beals TP, Weiler EW, Goldberg RB. 2000. The ArabidopsisDELAYED DEHISCENCE1 gene encodes an enzyme in the jasmonic acid synthesis pathway. Plant Cell 12:1042–1061.

    Google Scholar 

  • Schaller F, Weiler EW. 1997a. Enzymes of octadecanoid biosynthesis in plants. 12-oxo-phytodienoate 10,11-reductase. Eur J Biochem 245:294–299.

    PubMed  CAS  Google Scholar 

  • Schaller F, Weiler EW. 1997b. Molecular cloning and characterization of 12-oxophytodienoate reductase, an enzyme of the octadecanoid signaling pathway fromArabidopsis thaliana. Structural and functional relationship to yeast old yellow enzyme. J Biol Chem 272:28066–28072.

    PubMed  CAS  Google Scholar 

  • Schaller F, Hennig P, Weiler EW. 1998. 12-Oxophytodienoate-10,11-reductase: occurrence of two isoenzymes of different specificity against stereoisomers of 12-oxophytodienoic acid. Plant Physiol 118:1345–1351.

    PubMed  CAS  Google Scholar 

  • Schaller F, Biesgen C, Mussig C, Altmann T, Weiler EW 2000. 12-Oxophytodienoate reductase 3 (OPR3) is the isoenzyme involved in jasmonate biosynthesis. Planta 210:979–984.

    PubMed  CAS  Google Scholar 

  • Schaller F 2001. Enzymes of the biosynthesis of octadecanoidderived signalling molecules. J Exp Bot 52:11–23.

    PubMed  CAS  Google Scholar 

  • Schnurr J, Shockey J, BrowseJ. 2004. The acyl-CoA synthetase encoded byLAC82 is essential for normal cuticle development in Arabidopsis. Plant Cell 16:629–642.

    PubMed  CAS  Google Scholar 

  • Sembdner G, Parthier B.1993. The biochemistry and the physiologic and molecular actions of jasmonates. Annu Rev Plant Physiol Plant Mol Biol 44:569–589.

    CAS  Google Scholar 

  • Seo HS, Song JT, Cheong J-J, Lee J-H, Lee Y-W, Hwang I, Lee JS, Choi YD. 2001. Jasmonic acid carboxyl methyltransferase: A key enzyme for jasmonate-regulated plant responses. Proc Natl Acad Sci USA 98:4788–4793.

    PubMed  CAS  Google Scholar 

  • Shockey JM, Fulda MS, Browse J. 2003. Arabidopsis contains a large superfamily of acyl-activating enzymes. Phylogenetic and biochemical analysis reveals a new class of acyl-coenzyme A synthetases. Plant Physiol 132:1065–1076.

    PubMed  CAS  Google Scholar 

  • Siedow JN. 1991. Plant lipoxygenase: Structure and function. Annu Rev Plant Physiol 42:145–188.

    CAS  Google Scholar 

  • Sivasankar S, Sheldrick B, Rothstein SJ. 2000. Expression of allene oxide synthase determines defense gene activation in tomato. Plant Physiol 122:1335–1342.

    PubMed  CAS  Google Scholar 

  • Smyth DR, Bowman JL, Meyerowitz EM.1990. Early flower development in Arabidopsis. Plant Cell 2:755–767.

    PubMed  CAS  Google Scholar 

  • Sobajima H, Takeda M, Sugimori M, Kobashi N, Kiribuchi K, Cho EM, Akimoto C, Yamaguchi T, Minami E, Shibuya N, Schaller F, Weiler EW, Yoshihara T, Nishida H, Nojiri H, Omori T, Nishiyama M, Yamane H. 2003. Cloning and characterization of a jasmonic acid-responsive gene encoding 12-oxophytodienoic acid reductase in suspension-cultured rice cells. Planta 216:692–698.

    PubMed  CAS  Google Scholar 

  • Somerville C, Browse J. 1991. Plant lipids: metabolism, mutants, and membranes. Science 252:80–87.

    CAS  Google Scholar 

  • Song WC, Brash AR. 1991. Purification of an allene oxide synthase and identification of the enzyme as a cytochrome P-450. Science 253:781–784.

    PubMed  CAS  Google Scholar 

  • Song WC, Funk CD, Brash AR.1993. Molecular cloning of an allene oxide synthase: A cytochrome P450 specialized for the metabolism of fatty acid hydroperoxides. Proc Natl Acad Sci USA 90:8519–8523.

    PubMed  CAS  Google Scholar 

  • Staswick PE, Su W, Howell SH. 1992. Methyl jasmonate inhibition of root growth and induction of a leaf protein are decreased in anArabidopsis thaliana mutant. Proc Natl Acad Sci USA 89:6837–6840.

    PubMed  CAS  Google Scholar 

  • Staswick PE, Tiryaki I, Rowe ML.2002. Jasmonate response locusJAR1 and several related Arabidopsis genes encode enzymes of the firefly luciferase superfamily that show activity on jasmonic, salicylic, and indole-3-acetic acids in an assay for adenylation. Plant Cell 14:1405–1415.

    PubMed  CAS  Google Scholar 

  • Staswick PE, Tiryaki I. 2004. The oxylipin signal jasmonic acid is activated by an enzyme that conjugates it to isoleucine in Arabidopsis. Plant Cell 16:2117–2127.

    PubMed  CAS  Google Scholar 

  • Stelmach BA, Muller A, Hennig P, Laudert D, Andert L, Weiler EW. 1998. Quantitation of the octadecanoid 12-oxo-phytodienoic acid, a signalling compound in plant mechanotransduction. Phytochemistry 47:539–546.

    PubMed  CAS  Google Scholar 

  • Stelmach BA, Muller A, Hennig P, Gebhardt S, Schubert-Zsilavecz M, Weiler EW. 2001. A novel class of oxylipins,sn1-O-(12-oxophytodienoyl)-sn2-O-(hexadecatrienoyl)-monogalactoyl diglyceride, fromArabidopsis thaliana. J Biol Chem 276:12832–12838.

    PubMed  CAS  Google Scholar 

  • Stenzel I, Hause B, Maucher H, Pitzschke A, Miersch O, Ziegler J, Ryan CA, Wasternack C. 2003a. Allene oxide cyclase dependence of the wound response and vascular bundle-specific generation of jasmonates in tomato-amplification in wound signalling. Plant J 3:577–589.

    Google Scholar 

  • Stenzel I, Hause B, Miersch O, Kurz T, Maucher H, WeichertH, Ziegler J, Feussner I, Wasternack C. 2003b. Jasmonate bio synthesis and the allene oxide cyclase family ofArabidopsis thaliana. Plant Mol Biol 51:895–911.

    PubMed  CAS  Google Scholar 

  • Stintzi A, Browse J. 2000. TheArabidopsis male-sterile mutant,opr3, lacks the 12-oxophytodienoic acid reductase required for jasmonate synthesis. Proc Natl Acad Sci U S A 97:10625–10630.

    PubMed  CAS  Google Scholar 

  • Stintzi A, Weber H, Reymond P, Browse J, Farmer EE. 2001. Plant defense in the absence of jasmonic acid: the role of cyclopentenones. Proc Natl Acad Sci U S A 98:12837–12842.

    PubMed  CAS  Google Scholar 

  • Stott K, Saito K, Thiele DJ, Massey V. 1993. Old Yellow Enzyme. The discovery of multiple isozymes and a family of related proteins. J Biol Chem 268:6097–6106.

    PubMed  CAS  Google Scholar 

  • Straßner J, Furholz A, Macheroux P, Amrhein N, Schaller A. 1999. A homolog of old yellow enzyme in tomato. Spectral properties and substrate specificity of the recombinant protein. J Biol Chem 274:35067–35073.

    PubMed  Google Scholar 

  • Strassner J, Schaller F, Frick UB, Howe GA, Weiler EW, Amrhein NA, Macheroux P, Schaller A. 2002. Characterization and cDNA-microarray expression analysis of 12-oxophytodienoate reductases reveals differential roles for octadecanoid biosynthesis in the local versus the systemic wound response. Plant J 32:585–601.

    PubMed  CAS  Google Scholar 

  • Stuhlfelder C, Mueller MJ, Warzecha H. 2004. Cloning and expression of a tomato cDNA encoding a methyl jasmonate cleaving esterase. Eur J Biochem 271:2976–2983.

    PubMed  CAS  Google Scholar 

  • Stumpe M, Kandzia R, Gobel C, Rosahl S, Feussner I. 2001. A pathogen-inducible divinyl ether synthase (CYP74D) from elicitor-treated potato suspension cells. FEBS Lett 507:371–376.

    PubMed  CAS  Google Scholar 

  • Swiatek A, Dongen W Van, Esmans EL, Onckelen H Van. 2004. Metabolic fate of jasmonates in tobacco bright yellow-2 cells. Plant Physiol 135:161–172.

    PubMed  CAS  Google Scholar 

  • Tilton GB, Shockey JM, Browse J. 2004. Biochemical and molecular characterization of ACH2, an acyl-CoA thioesterase fromArabidopsis thaliana. J Biol Chem 279:7487–7494.

    PubMed  CAS  Google Scholar 

  • Ueda J, Kato J. 1980. Isolation and identification of a senescence-promoting substance from wormwood (Artemisia absinthium L.). Plant Physiol 66:246–249.

    PubMed  CAS  Google Scholar 

  • Ueda J, Kato J, Yamane H, Takahashi N. 1981. Inhibitory effect of methyl jasmonate and related compounds on kinetin-induced retardation of oat leaf senescence. Physiol Plant 52:305–309.

    CAS  Google Scholar 

  • van der Stelt M, Noordermeer MA, Kiss T, Van Zadelhoff G Van Merghart B, Veldink GA, Vliegenthart JF. 2000. Formation of a new class of oxylipins from N-acyl (ethanol) amines by the lipoxygenase pathway. Eur J Biochem 267:2000–2007.

    Google Scholar 

  • Vance RE, Hong S, Gronert K, Serhan CN, Mekalanos JJ. 2004. The opportunistic pathogenPseudomonas aeruginosa carries a secretable arachidonate 15-lipoxygenase. Proc Natl Acad Sci USA 101:2135–2139.

    PubMed  CAS  Google Scholar 

  • Vaz AD, Chakraborty S, Massey V. 1995. Old Yellow enzyme: aromatization of cyclic enones and the mechanism of a novel dismutation reaction. Biochemistry 34:4246–4256.

    PubMed  CAS  Google Scholar 

  • Veronesi C, Rickauer M, Fournier J, Pouenat ML, Esquerre-Tugaye MT. 1996. Lipoxygenase gene expression in the tobacco-Phytophthora parasitica nicotianae interaction. Plant Physiol 112:997–1004.

    PubMed  CAS  Google Scholar 

  • Vick BA, Zimmerman DC. 1979. Distribution of a fatty acid cyclase enzyme system in plants. Plant Physiol 64:203–205.

    PubMed  CAS  Google Scholar 

  • Vick BA, Zimmerman DC. 1983. The biosynthesis of jasmonic acid: a physiological role for plant lipoxygenase. Biochem Biophys Res Commun 111:470–477.

    PubMed  CAS  Google Scholar 

  • Vick BA, Zimmerman DC. 1984. Biosynthesis of jasmonic acid by several plant species. Plant Physiol 75:458–461.

    PubMed  CAS  Google Scholar 

  • Vick BA, Zimmerman DC. 1987. Pathways of fatty acid hydroproxide metabolism in spinach leaf chloroplasts. Plant Physiol 85:1073–1078.

    PubMed  CAS  Google Scholar 

  • Vollenweider S, Weber H, Stolz S, Chetelat A, Farmer EE. 2000. Fatty acid ketodienes and fatty acid ketotrienes: Michael addition acceptors that accumulate in wounded and diseasedArabidopsis leaves. Plant J 24:467–476.

    PubMed  CAS  Google Scholar 

  • von Dahl CC, Baldwin IT. 2004. Methyl jasmonate andcis-jasmone do not dispose of the herbivore-induced jasmonate burst inNicotiana attenuata. Physiol Plant 120:474–481.

    Google Scholar 

  • von Malek B, Graaff E van der, Schneitz K, Keller B. 2002. The Arabidopsis male-sterile mutantdde2-2 is defective in theAL-LENE OXIDE SYNTHASE gene encoding one of the key enzymes of the jasmonic acid biosynthesis pathway. Planta 216:187–192.

    Google Scholar 

  • Wallis JG, Browse J. 2002. Mutants of Arabidopsis reveal many roles for membrane lipids. Prog Lipid Res 41:254–278.

    PubMed  CAS  Google Scholar 

  • Wang C, Avdiushko S, Hildebrand DF. 1999. Overexpression of a cytoplasm-localized allene oxide synthase promotes the wound-induced accumulation of jasmonic acid in transgenic tobacco. Plant Mol Biol 40:783–793.

    PubMed  CAS  Google Scholar 

  • Wang C, Zien CA, Afitlhile M, Welti R, Hildebrand DF, Wang X. 2000. Involvement of phospholipase D in wound-induced accumulation of jasmonic acid in Arabidopsis. Plant Cell 12:2237–2246.

    PubMed  CAS  Google Scholar 

  • Wang X. 2004. Lipid signaling. Curr Opin Plant Biol 7:329–336.

    PubMed  CAS  Google Scholar 

  • Warburg O, Christian W. 1932. Ein zweites Sauerstoff-übertragendes Ferment und sein Absorptionspektrum. Naturwissenschaften 20:688.

    CAS  Google Scholar 

  • Warburg O, Christian W. 1933. über das gelbe Ferment und seine Wirkungen. Biochem Z 266:377–411.

    CAS  Google Scholar 

  • Wasternack C, Hause B. 2002. Jasmonates and octadecanoids: signals in plant stress, responses and development. Prog Nucl Acid Res Mol Biol 72:165–221.

    CAS  Google Scholar 

  • Weber H, Vick BA, Farmer EE. 1997. Dinor-oxo-phytodienoic acid: a new hexadecanoid signal in the jasmonate family. Proc Natl Acad Sci U S A 94:10473–10478.

    PubMed  CAS  Google Scholar 

  • Weber H, Chetelat A, Caldelari D, Farmer EE. 1999. Divinyl ether fatty acid synthesis in late blight-diseased potato leaves. Plant Cell 11:485–494.

    PubMed  CAS  Google Scholar 

  • Weichert H, Stenzel I, Berndt E, Wasternack C, Feussner I. 1999. Metabolic profiling of oxylipins upon salicylate treatment in barley leaves-preferential induction of the reductase pathway by salicylate. FEES Lett 464:133–137.

    CAS  Google Scholar 

  • Weiler EW, Albrecht T, Groth B, Xia Z-Q, Luxem M, Liss H, Andert L, Spengler P. 1993. Evidence for the involvement of jasmonates and their octadecanoid precursors in the tendril coiling response ofBryonia dioica. Phytochemistry 32:591–600.

    CAS  Google Scholar 

  • Weiler EW, Kutchan TM, Gorba T, Brodschelm W, Niesel U, Bublitz F. 1994. The Pseudomonas phytotoxin coronatine mimics octadecanoid signalling molecules of higher plants. FEBS Lett 345:9–13.

    PubMed  CAS  Google Scholar 

  • Weiler EW, Laudert D, Schaller F, Stelmach B, Hennig P (1998) “Fatty acid-derived signaling molecules in the interaction of plants with their environment” In: Romeo, JT, Downum KR, Verpoorte, R (eds.),Phytochemical signals and plant-microbe interactions. Recent advances in phytochemistry. Plenum Press, New York, pp 179–205.

    Google Scholar 

  • Xie D-X, Feys BF, James S, Nieto-Rostro M, Turner JG. 1998.COI1: anArabidopsis gene required for jasmonate-regulated defense and fertility. Science 280:1091–1094.

    PubMed  CAS  Google Scholar 

  • Yokoyama M, Yamaguchi S, Inomata S, Komatsu K, Yoshida S, Ida T, Yokokawa Y, Yamaguchi M, Kaihara S, Takimoto A. 2000. Stress-induced factor involved in flower formation of Lemna is an α-ketol derivative of linolenic acid. Plant Cell Physiol 4:110–113.

    Google Scholar 

  • Yoshihara T, Omer E-SA, Koshino H, Sakamura S, Kikuta Y, Koda Y. 1989. Structure of a tuber-inducing stimulus from potato leaves (Solanum tuberosum L.). Agric Biol Chem 3:2835–2837.

    Google Scholar 

  • Zheng Y, Massey V, Schaller A, Palfey BA, Carey PA. 2001. Comparison of resonance Raman spectra of flavin 3,4-dihydroxybenzoate charge-transfer complexes in three flavoenzymes. J Raman Spectrosc 32:579–586.

    Google Scholar 

  • Ziegler J, Hamberg M, Miersch O, Parthier B. 1997. Purification and characterization of allene oxide cyclase from dry corn seeds. Plant Physiol 114:565–573.

    PubMed  CAS  Google Scholar 

  • Ziegler J, Wasternack C, Hamberg M. 1999. On the specificity of allene oxide cyclase. Lipids 34:1005–1015.

    PubMed  CAS  Google Scholar 

  • Ziegler J, Stenzel I, Hause B, Maucher H, Hamberg M, Grimm R, Ganal M, Wasternack C. 2000. Molecular cloning of allene oxide cyclase. The enzyme establishing the stereochemistry of octadecanoids and jasmonates. J Biol Chem 275:19132–19138.

    PubMed  CAS  Google Scholar 

  • Zimmerman DC, Feng P. 1978. Characterization of a prostaglandin-like metabolite of linolenic acid produced by a flaxseed extract. Lipids 13:313–316.

    CAS  Google Scholar 

  • Zolman BK, Yoder A, Bartel B. 2000. Genetic analysis of indole-3-butyric acid responsesArabidopsis thaliana reveals four mutant classes. Genetics 156:1323–1337.

    PubMed  CAS  Google Scholar 

  • Zolman BK, Monroe-Augustus M, Thompson B, Hawes JW, Krukenberg KA, Matsuda SP, Bartel B. 2001a.chyl, an Arabidopsis mutant with impaired?-oxidation, is defective in a peroxisomal?-hydroxyisobutyryl-CoA hydrolase. J Biol Chem 276:31037–31046.

    PubMed  CAS  Google Scholar 

  • Zolman BK, Silva ID, Bartel B. 2001b. The Arabidopsispxal mutant is defective in an ATP-binding cassette transporter-like protein required for peroxisomal fatty acid?-oxidation. Plant Physiol 127:1266–1278.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Florian Schaller.

Additional information

Online publication: 27 January 2005

Rights and permissions

Reprints and permissions

About this article

Cite this article

Schaller, F., Schaller, A. & Stintzi, A. Biosynthesis and metabolism of jasmonates. J Plant Growth Regul 23, 179–199 (2004). https://doi.org/10.1007/BF02637260

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02637260

Key words

Navigation