Skip to main content
Log in

Modulation of antioxidant enzymes and programmed cell death by n-3 fatty acids

  • Antioxidant Status and Peroxidation
  • Published:
Lipids

Abstract

Studies from our laboratory indicate that n-3 (fish oil, FO) lipids at 10% (w/w) in a nutritionally adequate, semipurified diet, and supplemented with equal levels of antioxidants, extended the life span of lupus-prone (NZB/NZW)F1 (B/W) female mice as compared to n-6 (corn oil, CO) lipids. The early rise of autoimmune disease in CO-fed mice was closely linked to the loss of T-cell function. Both IL-2 production and IL-2 receptor expression were reduced due to the loss of naive T-Cells and a rise in memory T-cells. Proliferative response to both mitogens and superatigens (staphylococcal enterotoxins A and B) was higher in FO-fed 6.5-mon-old mice. These changes paralleled decreased PGE2 production by splenic cells from FO-fed mice.

Analysis of mRNA expression in different organs revealed differential effects of dietary lipids. In FO-fed, mice, transforming growth factor β1 (TGF β1) expression was decreased in kidneys, but splenic tissues had higher expression of TGF β mRNA. As TGF β promotes programmed cell death (PCD), we studied the effects of CO and FO on PCD rates in lymphocytes. Both propidium iodide staining and DNA fragmentation were elevated in lymphocytes of FO-fed mice when compared to CO-fed mice of similar age. Also, increased PCD correlated closely with increased Fas gene expression. Thus, in addition to various other antiinflammatory effects, dietary FO appears to increase PCD and prevent accumulation of self-reactive immune cells in lymphoid organs. Further studies are required to dissect the proand antiinflammatory mechanisms associated with dietary n-3 and n-6 lipids in modulating autoimmune disorders or malignancy during aging.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

B/W mice:

(NZB/NZW)F1 mice

CAT:

catalase

CO:

corn oil

CTLL-2:

cytotoxic T-lymphocyte line 2

FACS:

fluorescence activated cell sorting

FO:

fish oil

GSH-Px:

glutathione peroxidase

ICAM-1:

intercellular adhesion molecule-1

IL-2:

interleukin-2

LTB4 :

luekotriene B4

MDA:

malondialdehyde

MRL/lpr mice:

MRL mouse with a lymphoroliferative (lpr) gene

PCD:

programmed cell death

PGE2 :

prostaglandin E2

PI:

propidium iodide

SLE:

systemic lupus erythematosus

SOD:

superoxide dismutase

TBARS:

thiobarbituric acid-reactive substances

TBHQ:

tert-butylhydroquinone

TGF β:

transforming growth factor β

TNF-α:

tumor necrosis factor-α

References

  1. Fernandes, G. (1989) Effect of Dietary Fish Oil Supplement on Autoimmune Disease: Changes in Lymphoid Cell Subsets, Oncogen mRNA Expression and Neuroendocrine Hormones, inHealth Effects of Fish and Fish Oils (Chandra, R.K., ed.), ARTS Biomedical Publications, St. John's, Newfoundland, Canada, pp. 409–433.

    Google Scholar 

  2. Fernandes, G. and Venkatraman, J.T. (1993) Role of Omega-3 Fatty Acids in Health and Disease,Nutr. Res. 13, S19-S45.

    Article  CAS  Google Scholar 

  3. Fernandes, G., and Venkatraman, J.T. (1991) Modulation of Breast Cancer Growth in Nude Mice by Omega-3 Lipids, inWorld Review of Nutrition and Dietetics, Vol. 66,Health Effects of ω-3 Polyunsaturated Fatty Acids in Seafoods (Simopoulos, A.P., Kifer, R.R., Martin, R.E., and Barlow, S.M., eds.), Karger, New York, pp. 488–503.

    Google Scholar 

  4. Mensink, R.P., and Kafan, M.B. (1990) Effect of Dietary Trans Fatty Acids on High-Density and Low-Density Lipoprotein Cholesterol Levels in Healthy Subjects [see comments],N. Engl. J. Med. 223, 439–445.

    Article  Google Scholar 

  5. Robinson, D.R., Xu, L.L., Tateno, S., Guo, M., and Colvin, R.B. (1993) Suppression of Autoimmune Disease by Dietary n-3 Fatty Acids,J. Lipid Res. 34, 1435–1444.

    PubMed  CAS  Google Scholar 

  6. Kubo, C., Johnson, B.C., Day, N.K., and Good, R.A. (1984) Calorie Source, Calorie Restriction, Immunity and Aging of (NZB/NZW)F Mice,J. Nutr. 114, 1884–1889.

    PubMed  CAS  Google Scholar 

  7. Jung, L.K.L., Palladino, M.A., Calvano, S., Mark, D.A., Good, R.A., and Fermandes, G. (1982) Effect of Calorie Restriction on the Production and Responsiveness to Interleukin-2 in (NZB/NZW)F1 Mice,Clin. Immunol. Immunopathol. 25, 295–301.

    Article  PubMed  CAS  Google Scholar 

  8. Morrow, W.J.W., Ohashi, Y., Hall, J., Pribnow, J., Hiroshe, S., Shirai, T., and Levy, J.A. (1985) Dietary Fat and Immune Function. I. Antibody Response, Lymphocyte and Accessory Cell Function in (NZB/NZW)F1 Mice,J. Immunol. 135, 3857–3863.

    PubMed  CAS  Google Scholar 

  9. Talal, N., and Steinberg, A.D. (1974) The Pathogenesis of Autoimmunity in New Zealand Black Mice,Curr. Topics Microbiol. Immunol. 64, 79–103.

    CAS  Google Scholar 

  10. Theofilopoulos, A.N., and Dixon, F.J. (1985) Murine Models of Systemic Lupus Erythematosus,Adv. Immunol. 37, 269–390.

    Article  PubMed  CAS  Google Scholar 

  11. Venkatraman, J.T., Chandrasekar, B., Kim, J.D., and Fernandes, G., Effects of n-3 and n-6 Fatty Acids on the Activities and Expression of Hepatic Antioxidant Enzymes in Autoimmune-Prone NZB/NZW F1 Mice,Lipids 29, 561–568.

  12. Chandrasekar, B., Troyer, D.A., Venkatraman, J.T., and Fernandes, G. (1995) Dietary Omgea-3 Lipids Delay the Onset and Progression of Autoimmune Lupus Nephritis by Inhibiting Transforming Growth Factor β mRNA and Protein Expression,J. Autoimmun. 8, 381–393.

    Article  PubMed  CAS  Google Scholar 

  13. Troyer, D.A., Chandrasekar, B., Thinnes, T., Stone, A., Loskutoff, D.J., and Fernades, G. (1995) Effects of Energy Intake on Type 1 Plasminogen Activator Inhibitor Levels in Glomeruli of Lupus-Prone B/W Mice,Am. J. Pathol. 146, 111–120.

    PubMed  CAS  Google Scholar 

  14. Chandrasekar, B., and Fernandes, G. (1994) Decreased Proinflammatory Cytokines and Increased Antioxidant Enzyme Gene Expression by Omega-3 Lipids in Murine Lupus Nephritis,Biochem. Biophys. Res. Commun. 200, 893–898.

    Article  PubMed  CAS  Google Scholar 

  15. Fernandes, G., Friend, P., Yunis, E.J., and Good, R.A. (1978) Influence of Dietary Restriction on Immunologic Function and Renal Disease in NZB/NZW F1 Mice,Proc. Natl. Acad. Sci. USA 75, 1500–1504.

    Article  PubMed  CAS  Google Scholar 

  16. Venkatraman, J.T., Chandrasekar, B., Kim, J.-D., and Fernandes, G. (1994) Genotype Effects on the Antioxidant Enzymes Activity and mRNA Expression in Liver and Kidney Tissues of Autoimmune-Prone MRL/MpJ-lpr/lpr Mice,Biochim. Biophys. Acta 1213, 167–175.

    PubMed  CAS  Google Scholar 

  17. Fernandes, G., Chandrasekar, B., Venkatraman, J.T., Tomar, V., and Zhao, W. (1994) Increased TGF-Beta and Decreased Oncogene Expression by Omega-3 Fatty Acids in the Spleen Delays Onset of Autoimmune Disease in B/W Mice,J. Immunol. 152, 5979–5987.

    PubMed  CAS  Google Scholar 

  18. Fernandes, G. (1994) Dietary Lipids and Risk of Autoimmune Disease,Clin. Immunol. Immunopathol. 72, 193–197.

    Article  PubMed  CAS  Google Scholar 

  19. Sporn, M.B., and Roberts, A.B. (1990) The Transforming Growth Factor-Betas: Past, Present, and Future,Ann. N.Y. Acad. Sci. 593, 1–6.

    Article  PubMed  CAS  Google Scholar 

  20. Roberts, A.B., and Sporn, M.B. (1990) The Transforming Growth Factor-βs, inPeptide Growth Factors and Their Receptors, Handbook of Experimental Pharmacology, Vol. 95, (Sporn, M.B., and Roberts, A.B., eds.), Springer-Verlag, Berlin, pp. 419–472.

    Google Scholar 

  21. Del Giudice, G.D., and Crow, M.K. (1994) Role of Transforming Growth Factor Beta (TGF β) in Systemic Autoimmunity,Lupus 2, 213–220.

    Google Scholar 

  22. Sharma, K., and Ziyadeh, F.N. (1993) The Transforming Growth Factor-Beta System and the Kidney,Semin. Nephrol. 13, 116–128.

    PubMed  CAS  Google Scholar 

  23. Bruijn, J.A., Roos, A., DeGeus, B., and deHeer, E. (1994) Transforming Growth Factor-Beta and the Glomerular Extracellular Matrix in Renal Pathology,J. Lab. Clin. Med. 123, 34–37.

    PubMed  CAS  Google Scholar 

  24. Kawasaki, K., Yaoita, E., Yamamoto, T., Tamatani, T., Miyadaka, M., and Kihara, I. (1993) Antibodies Against Intercellular Adhesion Molecule-1 and Lymphocyte Function-Associated Antigen-1 Prevent Glomerular Injury in Rat Experimental Crescentic Glomerulonephritis,J. Immunol. 150, 1074–1083.

    PubMed  CAS  Google Scholar 

  25. Shull, M.M., Ormsby, I., Kier, A.B., Pawlowski, S., Diebold, R.J., Yin, M., Allen, R., Sidman, C., Proetzel, G., Calvin, D., Annunziata, N., and Doetschman, T. (1992) Targeted Disruption of the Mouse Transformating Growth Factor-Beta 1 Gene Results in Multifocal Inflammatory Disease,Nature 359, 693–699.

    Article  PubMed  CAS  Google Scholar 

  26. Kulkarni, A.B., Huh, C.-G., Becker, D., Geiser, A., Lyght, M., Flanders, K.C., Roberts, A.B., Sporn, M.B., Ward, J.M., and Karlsson, S. (1993) Transforming Growth Factor Beta 1 Null Mutation in Mice Causes Excessive Inflammatory Response and Early Death,Proc. Natl. Acad. Sci. USA 90, 770–774.

    Article  PubMed  CAS  Google Scholar 

  27. Bursch, W., Oberhammer, F., Jirtle, R.L., Askari, M., Sedivy, R., Grasl-Kraupp, B., Purchio, A.F., and Schulte-Hermann, R. (1993) Transforming Growth Factor-Beta 1 as a Signal for Induction of Cell Death by Apoptosis,Br. J. Cancer 67, 531–536.

    PubMed  CAS  Google Scholar 

  28. Oberhammer, F.A., Pavelka, M., Sushitra, S., Tiefenbacher, R., Purchio, A.F., Bursch, W., and Schulte-Herman, R. (1992) Induction of Apoptosis in Cultured Hepatocytes and in Regressing Liver by Transforming Growth Factor Beta 1,Proc. Natl. Acad. Sci. USA 89, 5408–5412.

    Article  PubMed  CAS  Google Scholar 

  29. Ogawa, N., Dang, H., and Talal, N. (1995) Apopotosis and Autoimmunity,J. Autoimmun. 8, 1–19.

    Article  PubMed  CAS  Google Scholar 

  30. Fernandes, G., Chandrasekar, B., Mountz, J.D., and Zhao, W. (1995) Modulation of Fas Apoptotic Gene Expression in Spleens of B/W Mice by the Source of Dietary Lipids with and Without Calorie Restriction,FASEB J. 9, A787 (4559).

    Google Scholar 

  31. Luan, X., Zhao, W., Chandrasekar, B., and Fernandes, G. (1995) Calorie Restriction Modulates Lymphocyte Subset Phenotype and Increases Apoptosis in MRL/lpr Mice,Immunol. Lett. 47, 181–186.

    Article  PubMed  CAS  Google Scholar 

  32. Ames, B.N., Shigenaga, M.K., and Hagen, T.M. (1993) Oxidants, Antioxidants, and the Degenerative Diseases of Aging [Review],Proc. Natl. Acad. Sci. USA 90, 7915–7922.

    Article  PubMed  CAS  Google Scholar 

  33. Weindruch, R. (1984) Dietary Restriction and the Aging Process, inFree Radicals in Molecular Biology, Aging, and Disease (Amstrong, D, Sohal, R., Cutler, R., and Slater, T.F. eds.), Raven Press, New York, pp. 181–202.

    Google Scholar 

  34. Laganiere, S., Yu, B.P., and Fernandes, G. (1990) Studies on Membrane Lipid Peroxidation in Omega-3 Fatty Acid Fed Autoimmune Mice: Effect of Vitamin E Supplementation, inAntioxidant Nutrients and Immune Functions, Advances Exper. Biol. and Med., Vol. 262, (Bendich, A., Phillips, M., and Tengerdy, R., eds.), Plenum Press, New York, pp. 95–102.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

About this article

Cite this article

Fernandes, G., Chandrasekar, B., Luan, X. et al. Modulation of antioxidant enzymes and programmed cell death by n-3 fatty acids. Lipids 31, S91–S96 (1996). https://doi.org/10.1007/BF02637058

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02637058

Keywords

Navigation