Skip to main content
Log in

LLC-PK1 epithelia as a model for in vitro assessment of proximal tubular nephrotoxicity

  • Cellular And Molecular Toxicology
  • Published:
In Vitro Cellular & Developmental Biology - Animal Aims and scope Submit manuscript

Summary

LLC-PK1 cells, an established epithelial cell line derived from pig kidney, were used as a model system for assessment of nephrotoxic side effects of three cephalosporin antibiotics: cephaloridine, ceftazidime, and cefotaxime. Toxic effects of these xenobiotics were monitored on confluent monolayers by light and electron microscopy and by the release of cellular marker enzyme activities into the culture medium. In addition, LLC-PK1 cells were grown on microporous supports, and cephalosporin-induced alteration of epithelial functional integrity was monitored by a novel electrophysiologic approach. For this purpose, an Ussing chamberlike experimental setup was used. The dose-dependent effects on transepithelial ionic permselectivity were monitored under conditions in which defined fractions of the apical culture medium NaCl contents were replaced iso-osmotically by mannitol. This method of determining the functional intactness of the epithelial barrier by measuring dilution potentials was found to be far more sensitive than monitoring cell injury by means of morphology or measurement of enzyme release. As expected from animal experimental data, a dose-dependent disruption of monolayer integrity was detected with all three methodologies applied. Cephaloridine was found the most toxic compound followed by ceftazidime, where a 3-fold, and cefotaxime, where a 10-fold dose of that of cephaloridine was needed to produce cell injury. Measurement of transepithelial dilution potentials was more sensitive as compared to the release of the apical plasma membrane marker enzyme activities alkaline phosphatase andγ-glutamyltranspeptidase, the cytosolic lactate dehydrogenase, or the mitochondrial glutamate dehydrogenase. The data were compared to the effects of the aminoglycoside antibiotic gentamicin, which at least with respect to its effects on LLC-PK1 morphology and enzyme release, but not transepithelial electrical properties, was already investigated.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Appel, W. Leucin-aminopeptidase. In: Bergmeyer, H. U., ed. Methoden der enzymatischen analyse, vol. 1. Weinheim: Verlag Chemie; 1974:991–995.

    Google Scholar 

  2. Barry, P. H.; Diamond, J. M. Junction potentials, electrode standard potentials and other problems in interpreting electrical properties of membrane. J. Membr. Biol. 3:93–122; 1970.

    Article  CAS  Google Scholar 

  3. Bergmeyer, H. U.; Berndt, E. UV-test mit Pyruvat and NADH. In: Bergmeyer, H. U., ed. Methoden der enzymatischen analyse, vol. 1. Weinheim: Verlag Chemie; 1974:607–612.

    Google Scholar 

  4. Boulpaep, E. L.; Seely, J. F. Electrophysiology of proximal and distal tubules in the autoperfused dog kidney. Am. J. Physiol. 221:1084–1096; 1971.

    PubMed  CAS  Google Scholar 

  5. Cereijido, M.; Robbins, E. S.; Dolan, W. J., et al. Polarized monolayers formed by epithelial cells on a permeable and translucent support. J. Cell. Biol. 77:853–880; 1978.

    Article  PubMed  CAS  Google Scholar 

  6. Cojocel, C.; Laeschke, G.; Inselmann, G., et al. Inhibition of cephaloridine-induced lipid peroxidation. Toxicology 35:295; 1985.

    Article  PubMed  CAS  Google Scholar 

  7. Cojocel, C.; Hannemann, J.; Baumann, K. Cephaloridine-induced lipid peroxidation initiated by reactive oxygen species as a possible mechanism of cephaloridine nephrotoxicity. Biochim. Biophys. Acta 834:402–410; 1985.

    PubMed  CAS  Google Scholar 

  8. Fauth, C.; Rossier, B.; Roch-Ramel, F. Transport of tetraethylammonium by a kidney epithelial cell line (LLC-PK1). Am. J. Physiol. 254:F351; 1988.

    Google Scholar 

  9. Fouda, A. K.; Fauth, C.; Roch-Ramel, F. Transport of organic cations by kidney epithelial cell line LLC-PK1. J. Pharmacol. Exp. Ther. 252:286; 1990.

    PubMed  CAS  Google Scholar 

  10. Glossmann, H.; Neville D. M. Gamma-glutamyltransferase in kidney brush border membranes. FEBS Lett. 19:340–344; 1972.

    Article  PubMed  CAS  Google Scholar 

  11. Goldstein, R. S.; Smith, P. F.; Tarloff, J. B., et al. Biochemical mechanisms of cephaloridine nephrotoxicity. Life Sci. 42:1809–1816; 1988.

    Article  PubMed  CAS  Google Scholar 

  12. Gstraunthaler, G. J. A. Epithelial cells in tissue culture. Renal Physiol. Biochem. 11:1–42; 1988.

    PubMed  CAS  Google Scholar 

  13. Guder, W. G.; Heidland, A. Urine analysis. Report on the workshop of the German Society for Clinical Chemistry and the Society of Nephrology in Würzburg, October 1985. J. Clin. Chem. Clin. Biochem. 24:611; 1986.

    PubMed  CAS  Google Scholar 

  14. Handler, J. S.; Green, N.; Steele, R. E. Cultures as epithelial models: porous-bottom culture dishes for studying transport and differentiation. In: Fleischer, S.; Fleischer, B., eds. Methods in enzymology, vol. 171. San Diego, CA: Academic Press; 1989:736.

    Google Scholar 

  15. Holohan, P. D.; Sokol, P. P.; Ross, C. R., et al. Gentamicin induced increases in cytosolic calcium in pig kidney cells (LLC-PK1). J. Pharmacol. Exp. Ther. 247:349–354; 1988.

    PubMed  CAS  Google Scholar 

  16. Hori, R.; Yamamoto, K.; Saito, H., et al. Effect of aminoglycoside antibiotics on cellular functions of kidney epithelial cell line (LLC-PK1): a model system for aminoglycoside nephrotoxicity. J. Pharmacol. Exp. Ther. 230:742–748; 1984.

    CAS  Google Scholar 

  17. Hruban, Z.; Slesers, A.; Hopkins, E. Drug induced and naturally occurring myeloid bodies. Lab. Invest. 27:62–70; 1972.

    PubMed  CAS  Google Scholar 

  18. Inui, K. I.; Saito, H.; Iwata, T., et al. Aminoglycoside-induced alterations in apical membranes of kidney epithelial cell line (LLC-PK1). Am. J. Physiol. 254:C251; 1988.

    Google Scholar 

  19. Kosek, J. C.; Mazze, R. I.; Cousins, M. J. Nephrotoxicity of gentamicin. Lab. Invest. 30:48–57; 1974.

    PubMed  CAS  Google Scholar 

  20. Mann, H. B.; Whitney, D. R. On a test of whether one of two random variables is stochastically larger than the other. Ann. Math. Stat. 18:50; 1947.

    Google Scholar 

  21. Maruhn, D. Rapid colorimetric assay ofβ-galactosidase andN-acetyl-β-glucosaminidase in human urine. Clin. Chim. Acta 73:453–461; 1976.

    Article  PubMed  CAS  Google Scholar 

  22. Matsuda, O.; Beck, F. X.; Dörge, A., et al. Electrolyte composition of renal tubular cells in gentamicin nephrotoxicity. Kidney Int. 33:1107–1112; 1988.

    PubMed  CAS  Google Scholar 

  23. Morin, J. P.; Viotte, G.; Vandewalle, A., et al. Gentamicin-induced nephrotoxicity: a cell biology approach. Kidney Int. 18:583–590; 1980.

    PubMed  CAS  Google Scholar 

  24. Pfaller, W. Structure function correlation on rat kidney: quantitative correlation of structure and function in the normal and injured rat kidney. Adv. Anat. Embryol. Cell. Biol. 70:1; 1982.

    PubMed  CAS  Google Scholar 

  25. Pfaller, W.; Joannidis, M.; Gstraunthaler, G., et al. Quantitative morphologic changes of nephron structures and urinary enzyme activity pattern in sodium-maleate induced renal injury. Renal Physiol. Biochem. 12:56–64; 1989.

    PubMed  CAS  Google Scholar 

  26. Price, R. G. Urinary enzymes, nephrotoxicity and renal disease. Toxicology 23:99; 1982.

    Article  PubMed  CAS  Google Scholar 

  27. Rabito, C. A. Occluding junctions in a renal cell line with characteristics of proximal tubular cells. Am. J. Physiol. 250:F734-F743; 1986.

    PubMed  CAS  Google Scholar 

  28. Rabito, C. A.; Tchao, R.; Valentich, J., et al. Distribution and characteristics of the occluding junctions in a monolayer of a cell line (MDCK) derived from canine kidney. J. Membr. Biol. 43:351–365; 1978.

    Article  PubMed  CAS  Google Scholar 

  29. Sack, K.; Marre, R.; Schulz, E.; Renale Nebenwirkungen von Beta-Lactam-Antibiotika. Krankenhauspharmazie 10:415–418; 1985.

    Google Scholar 

  30. Sausen, P. J.; Elfarra, A. A.; Cooley, A. J. Methimazole protection of rats against chemically induced kidney damage in vivo. J. Pharmacol. Exp. Ther. 260:393–403; 1992.

    PubMed  CAS  Google Scholar 

  31. Schmidt, E. Glutamat-dehydrogenase. In: Bergmeyer, H. U., ed. Methoden der enzymatischen analyse, vol. 1. Weinheim: Verlag Chemie; 1974:689–695.

    Google Scholar 

  32. Schwertz, D. W.; Kreisberg, J. I., Venkatachalam, A. Gentamicin-induced alterations in pig kidney epithelial (LLC-PK1) cells in culture. J. Pharmacol. Exp. Ther. 236:254–261; 1986.

    PubMed  CAS  Google Scholar 

  33. Silverblatt, F. J.; Turck, M.; Bulger, R. Nephrotoxicity due to cephaloridine: a light- and electron-microscopic study in rabbits. J. Infect. Dis. 122:33; 1970.

    PubMed  CAS  Google Scholar 

  34. Silverblatt, F. J.; Kuehn, C. Autoradiology of gentamicin uptake by the rat proximal tubule cell. Kidney Int. 15:335–345; 1979.

    PubMed  CAS  Google Scholar 

  35. Steele, R. E.; Preston, A. S.; Johnson, J. P., et al. Porous-bottom dishes for culture of polarized cells. Am. J. Physiol. 251:C136-C139; 1986.

    PubMed  CAS  Google Scholar 

  36. Tune, B. M. Effect of organic acid transport inhibitors on renal cortical uptake and proximal tubular toxicity of cephaloridine. J. Pharmacol. Exp. Ther. 181:250–256; 1972.

    PubMed  CAS  Google Scholar 

  37. Tune, B. M.; Fravert, D. Cephalosporin nephrotoxicity: transport, cytotoxicity and mitochondrial toxicity of cephaloglycin. J. Pharmacol. Exp. Ther. 215:186–190; 1980.

    PubMed  CAS  Google Scholar 

  38. Ullrich, K. J.; Rumrich, G. Contraluminal transport systems in the proximal renal tubule involved in secretion of organic anions. Am. J. Physiol. 254:F453-F462; 1988.

    PubMed  CAS  Google Scholar 

  39. Ullrich, K. J.; Rumrich, G.; Klöss, S. Contraluminal organic anion and cation transport in the proximal renal tubule: V. Interaction with Sulfamoyl- and phenoxy diuretics and withβ-lactam antibiotics. Kidney Int. 36:78–88; 1989.

    PubMed  CAS  Google Scholar 

  40. Walter, K.; Schütt, C. Saure und alkalische phosphatase im serum. In: Bergmeyer, H. U., ed. Methoden der enzymatischen Analyse, vol. 1. Weinheim: Verlag Chemie; 1974:888–892.

    Google Scholar 

  41. Wold, J. S.; Turnipseed, S. A.; Miller, B. L. The effect of renal cation transport inhibition on cephaloridine nephrotoxicity. Toxicol. Appl. Pharmacol. 47:115; 1979.

    Article  PubMed  CAS  Google Scholar 

  42. Wold, J. S.; Turnipseed, S. A. The effect of renal cation transport inhibitors on the in vivo and in vitro accumulation and efflux of cephaloridine. Life Sci. 27:2559–2564; 1980.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Steinmassl, D., Pfaller, W., Gstraunthaler, G. et al. LLC-PK1 epithelia as a model for in vitro assessment of proximal tubular nephrotoxicity. In Vitro Cell Dev Biol - Animal 31, 94–106 (1995). https://doi.org/10.1007/BF02633969

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02633969

Key words

Navigation