Skip to main content
Log in

Defined medium for primary culture de novo of adult rat alveolar epithelial cells

  • Cellular Models
  • Published:
In Vitro Cellular & Developmental Biology - Animal Aims and scope Submit manuscript

Summary

Isolated type II pneumocytes grown in serum on tissue culture-treated polycarbonate filters form monolayers with characteristic bioelectric properties, and change morphologically with time in culture to resemble type I cells. Concurrently, the cells express type I cell surface epitopes, making this a potentially useful in vitro model with which to study regulation of alveolar epithelial cell function and differentiation. To define specific soluble growth factors and matrix substances that may regulate these processes, it would be preferable to culture isolated pneumocytes de novo under completely defined, serum-free conditions. In this study, we developed a completely defined serum-free medium that is capable of supporting alveolar epithelial cells in primary culture, allowing the formation of monolayers with characteristic bioelectric and phenotypic properties. Freshly isolated rat type II cells were resuspended in completely defined serum-free medium and plated de novo on polycarbonate filters. Plating efficiency, bioelectric properties, morphology, and binding of a type I cell-specific monoclonal antibody were determined as functions of time. Plating efficiency plateaus at about 14% by Day 3 in culture. Transepithelial resistance rises to high levels, peaking at 1.76±0.14 KΩ-cm2 by Day 5 in culture. Short-circuit current peaks on Day 3 in culture at 2.71±0.35 µA/cm2. With time, the cells gradually become flattened with protuberant nuclei and long cytoplasmic extensions, more closely resembling type I cells, and begin to express a type I cell surface epitope. These observations indicate that it is feasible to culture alveolar epithelial cell monolayers under completely defined serum-free conditions de novo. This culture system should prove useful for identifying soluble growth factors and matrix substances that modulate alveolar epithelial cell biological properties.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Barnes, D.; Sato, G. Serum-free cell culture: a unifying approach. Cell 22:649–655; 1980.

    Article  PubMed  CAS  Google Scholar 

  2. Barnes, D.; Sato, G. Methods for growth of cultured cells in serum-free medium. Anal. Biochem. 102:255–270; 1980.

    Article  PubMed  CAS  Google Scholar 

  3. Beckmann, J. D.; Takizawa, H.; Romberger, D., et al. Serum-free culture of fractionated bovine bronchial epithelial cells. In Vitro Cell. Dev. Biol. 28A:39–46; 1992.

    PubMed  CAS  Google Scholar 

  4. Byrne, P. J.; Tzaki, M. G.; Joneja, M. G., et al. A serum-free culture medium which improves adult rat type II pneumocyte viability in primary culture. In: Eklund, L.; Jonson, B.; Malm, L., eds. Surfactant and the respiratory tract. Amsterdam: Elsevier; 1989:15–27.

    Google Scholar 

  5. Cesarone, C. F.; Bolognesi, C.; Santi, L. Improved microfluorometric DNA determination in biological material using 33258 Hoechst. Anal. Biochem. 100:188–197; 1979.

    Article  PubMed  CAS  Google Scholar 

  6. Cheek, J. M.; Kim, K. J.; Crandall, E. D. Tight monolayers of rat alveolar epithelial cells: bioelectric properties and active sodium transport. Am. J. Physiol. 256(25):C688–693; 1989.

    PubMed  CAS  Google Scholar 

  7. Cheek, J. M.; Evans, M. J.; Crandall, E. D. Type I cell-like morphology in tight alveolar epithelial monolayers. Exp. Cell Res. 84:375–387; 1989.

    Article  Google Scholar 

  8. Cheek, J. M.; Woodcock-Mitchell, J.; Li, C., et al. Effects of serum-free medium on bioelectric properties and keratin expression in tight monolayers of alveolar epithelial cells. Am. Rev. Respir. Dis. 143:A209; 1991.

    Google Scholar 

  9. Cott, G. R.; Walker, S. R.; Mason, R. J. The effect of substratum and serum on the lipid synthesis and morphology of alveolar type II cells in vitro. Exp. Lung Res. 13:427–447; 1987.

    PubMed  CAS  Google Scholar 

  10. Danto, S. I.; Zabski, S. M.; Crandall, E. D. Reactivity of alveolar epithelial cells in primary culture with type I cell monoclonal antibodies. Am. J. Respir. Cell Mol. Biol. 6:296–306; 1992.

    PubMed  CAS  Google Scholar 

  11. Dobbs, L. G.; Geppert, E. F.; Williams, M. C., et al. Metabolic properties and ultrastructure of alveolar type II cells isolated with elastase. Biochim. Biophys. Acta 618:510–523; 1980.

    PubMed  CAS  Google Scholar 

  12. Dobbs, L. G.; Gonzalez, R.; Williams, M. C. An improved method for isolating type II cells in high yield and purity. Am. Rev. Respir. Dis. 134:141–145; 1986.

    PubMed  CAS  Google Scholar 

  13. Dobbs, L. G. Isolation and culture of alveolar type II cells. Am. J. Physiol. 258(2):L134–147; 1990.

    PubMed  CAS  Google Scholar 

  14. Elliget, K. A.; Trump, B. F. Primary culture of normal rat kidney proximal tubule epithelial cells for studies of renal cell injury. In Vitro Cell. Dev. Biol. 27A:739–748; 1991.

    PubMed  CAS  Google Scholar 

  15. Fisher, A. B.; Furia, L.; Berman, H. Metabolism of rat granular pneumocytes isolated in primary culture. J. Appl. Physiol. 49:743–750; 1980.

    PubMed  CAS  Google Scholar 

  16. Fraslon, C.; Rolland, G.; Bourbon, J. R., et al. Culture of fetal alveolar epithelial type II cells in serum-free medium. In Vitro Cell. Dev. Biol. 27S:843–852; 1991.

    Google Scholar 

  17. Gruenert, D. C.; Basbaum, C. B.; Widdicombe, J. H. Long-term culture of normal and cystic fibrosis epithelial cells grown under serum-free conditions. In Vitro Cell. Dev. Biol. 26:411–418; 1990.

    Article  PubMed  CAS  Google Scholar 

  18. Hahm, H. A.; Ip, M. M.; Darcy, K., et al. Primary culture of normal rat mammary epithelial cells within a basement membrane matrix. II. Functional differentiation under serum-free conditions. In Vitro Cell. Dev. Biol. 26:803–814; 1990.

    Article  PubMed  CAS  Google Scholar 

  19. Hutchings, S. E.; Sato, G. H. Growth and maintenance of HeLa cells in serum-free medium supplemented with hormones. Proc. Natl. Acad. Sci. USA 75:901–904; 1978.

    Article  PubMed  CAS  Google Scholar 

  20. Jassal, D.; Han, R. N. N.; Caniggia, I., et al. Growth of distal fetal rat lung epithelial cells in a defined serum-free medium. In Vitro Cell. Dev. Biol. 27A:625–632; 1991.

    PubMed  CAS  Google Scholar 

  21. Kawada, H.; Shannon, J. M.; Mason, R. J. Improved maintenance of adult rat alveolar type II cell differentiationin vitro: effect of serum-free, hormonally defined medium and a reconstituted basement membrane. Am. J. Respir. Cell Mol. Biol. 3:33–43; 1990.

    PubMed  CAS  Google Scholar 

  22. King, R. J.; Jones, M. B.; Minoo, P. Regulation of lung cell proliferation by polypeptide growth factors. Am. J. Physiol. 257(1):L23–38; 1989.

    PubMed  CAS  Google Scholar 

  23. Kondo, M.; Finkbeiner, W. E.; Widdicombe, J. H. Simple technique for culture of highly differentiated cells from dog tracheal epithelium. Am. J. Physiol. 261(5):L106–117; 1991.

    PubMed  CAS  Google Scholar 

  24. Mason, R. J.; Walker, S. R.; Shields, B. A., et al. Identification of rat alveolar type II epithelial cells with a tannic acid and polychrome stain. Am. Rev. Respir. Dis. 131:786–788; 1985.

    PubMed  CAS  Google Scholar 

  25. Pelton, R. W.; Moses, H. L. The beta-type transforming growth factor: mediators of cell regulation in the lung. Am. Rev. Respir. Dis. 142:S31–35; 1990.

    PubMed  CAS  Google Scholar 

  26. Rannels, D. E.; Rannels, S. R. Influence of the extracellular matrix on type II cell differentiation. Chest 96:165–173; 1989.

    PubMed  CAS  Google Scholar 

  27. Sannes, P. L. Structural and functional relationships between type II pneumocytes and components of extracellular matrices. Exp. Lung Res. 17:639–659; 1991.

    PubMed  CAS  Google Scholar 

  28. Shannon, J. M.; Mason, R. J.; Jennings, S. D. Functional differentiation of alveolar type II epithelial cells in vitro: effects of cell shape, cell-matrix interactions and cell-cell interactions. Biochim. Biophys. Acta 931:143–156; 1987.

    Article  PubMed  CAS  Google Scholar 

  29. Stevenson, B. R.; Anderson, J. M.; Goodenough, D. A., et al. Tight junction structure and ZO-1 content are identical in two strains of Madin-Darby canine kidney cells which differ in transepithelial resistance. J. Cell Biol. 107:2401–2408; 1988.

    Article  PubMed  CAS  Google Scholar 

  30. Stevenson, B. R.; Anderson, J. M.; Braun, I. D., et al. Phosphorylation of the tight-junction protein ZO-1 in two strains of Madin-Darby canine kidney cells which differ in transepithelial resistance. Biochem. J. 263:597–599; 1989.

    PubMed  CAS  Google Scholar 

  31. Taub, M.; Chuman, L.; Saier, M. H., Jr., et al. Growth of Madin-Darby canine kidney epithelial cell (MDCK) line in hormone-supplemented, serum-free medium. Proc. Natl. Acad. Sci. USA 76:3338–3342; 1979.

    Article  PubMed  CAS  Google Scholar 

  32. Tanswell, K. A.; Byrne, P. J.; Han, R. N. N., et al. Limited division of low-density adult rat type II pneumocytes in serum-free culture. Am. J. Physiol. 260(4):L395–402; 1991.

    PubMed  CAS  Google Scholar 

  33. Van Scott, M. R.; Yankaskas, J. R.; Boucher, R. C. Culture of airway epithelial cells: research techniques. Exp. Lung Res. 11:75–94; 1986.

    PubMed  Google Scholar 

  34. Van Scott, M. R.; Lee, N. P.; Yankaskas, J. R., et al. Effect of hormones on growth and function of cultured canine tracheal epithelial cells. Am. J. Physiol. 255(24):C237–245; 1988.

    PubMed  Google Scholar 

  35. Vlodavsky, I.; Folkman, J.; Sullivan, R., et al. Endothelial cell-derived basic fibroblast growth factor: synthesis and deposition into subendothelial extracellular matrix. Proc. Natl. Acad. Sci. USA 84:2292–2296; 1987.

    Article  PubMed  CAS  Google Scholar 

  36. Vukicevic, S.; Kleinman, H. K.; Luyten, F. P., et al. Identification of multiple active growth factors in basement membrane Matrigel suggests caution in interpretation of cellular activity related to extracellular matrix components. Exp. Cell Res. 202:1–8; 1992.

    Article  PubMed  CAS  Google Scholar 

  37. West, D. C.; Sattar, A.; Kumar, S. A simplified in situ solubilization procedure for the determination of DNA and cell number in tissue cultured mammalian cells. Anal. Biochem. 147:289–295; 1985.

    Article  PubMed  CAS  Google Scholar 

  38. Winer, B. J. Statistical principles in experimental design. New York: McGraw-Hill; 1971:210–219, 445–449.

    Google Scholar 

  39. Yamaya, M.; Finkbeiner, W. E.; Chun, S. Y., et al. Differentiated structure and function of cultures from human tracheal epithelium. Am. J. Physiol. 262(6):L713–724; 1992.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Borok, Z., Danto, S.I., Zabski, S.M. et al. Defined medium for primary culture de novo of adult rat alveolar epithelial cells. In Vitro Cell Dev Biol - Animal 30, 99–104 (1994). https://doi.org/10.1007/BF02631400

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02631400

Key words

Navigation