Skip to main content
Log in

Characterization of immortalized mouse granulosa cell lines

  • Cellular Models
  • Published:
In Vitro Cellular & Developmental Biology - Animal Aims and scope Submit manuscript

Summary

Cell cultures of primary mouse granulosa cells were transfected with a v-myc-containing plasmid, and the resulting stable cell lines were tested for their steroidogenic properties and physiologic status. Granulosa cells were obtained from 22-day-old NMRI mice injected with 8 IU pregnant mare serum gonadotropin i.p. 2 days earlier. In Passage 1 the cells were transfected with pSVv-myc using calcium phosphate precipitation or lipofectin. The 3β- and 17β-hydroxy steroid dehydrogenase activity was visualized in control cultures. The three cell lines obtained have been in culture for over 1 yr and have been subcultured for more than 90 passages. The cell line GRM01, with a doubling time of 37±3 h and a diploid modal chromosome number, produced progesterone, estradiol, as well as inhibinlike and activinlike material under basal conditions. A combination of follicle-stimulating hormone and luteinizing hormone was able to increase the secretion of progesterone. GRM01L, a fast growing clone of the GRM01 line with a doubling time of 10±1 h, retained only the capacity to produce activinlike material and transforming growth factor-β, and it was the only one with a tumorigenic capacity. Epidermal growth factor, insulin, and interleukin-6 were able to induce the [3H]thymidine incorporation into DNA in these two cell lines. GRM02, with a doubling time of 36±2 h and a hypertriploid modal chromosome number, produced progesterone and activinlike and inhibinlike material. Follicle-stimulating hormone and luteinizing hormone were able to enhance the secretion of progesterone. For this cell line, only insulin was shown to induce [3H]thymidine incorporation into DNA.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Adashi, E. Y.; Resnick, C. E.; D’Ercole, A. J., et al. Insulin-like growth factors as intra-ovarian regulators of granulosa cell growth and function. Endocrinol. Rev. 6:400–420; 1985.

    CAS  Google Scholar 

  • Amsterdam, A.; Zauberman, A.; Meir, G., et al. Cotransfection of granulosa cells with simian virus 40 and HaRAS oncogene generate stable lines capable of induced steroidogenesis. Proc. Natl. Acad. Sci. USA 85:7582–7586; 1988.

    Article  PubMed  CAS  Google Scholar 

  • Amsterdam, A.; Rotmensch, S. Structure-function relationships during granulosa cell differentiation. Endocrinol. Rev. 8:309–337; 1987.

    CAS  Google Scholar 

  • Ben Ze’ev, A.; Amsterdam, A. Regulation of cytoskeletal proteins involved in cell contact formation during differentiation of granulosa cells on extracellular matrix. Proc. Natl. Acad. Sci. USA 83:2894–2898; 1986.

    Article  Google Scholar 

  • Bendell, J. J.; Dorrington, J. H. Epidermal growth factor influences growth and differentiation of rat granulosa cells. Endocrinology 127:533–540; 1990.

    PubMed  CAS  Google Scholar 

  • Bernath, V. A.; Muro, A. F.; Vitullo, A. D., et al. Cyclic AMP inhibits fibronectin gene expression in a newly developed granulosa cell line by a mechanism that suppresses cAMP-responsive-dependent transcriptional activation. J. Biol. Chem. 265:18219–18226; 1990.

    PubMed  CAS  Google Scholar 

  • Birren, S. J.; Anderson, D. J. A vMYC-immortalized sympathoadrenal progenitor cell line in which neuronal differentiation is initiated by FGF but not NGF. Neuron 4:189–201; 1990.

    Article  PubMed  CAS  Google Scholar 

  • Burowiec, J. A.; Dean, F. B.; Bullock, P. A., et al. Binding and unwinding—how T antigen engages the SV40 origin of DNA replication. Cell 60:181–184; 1990.

    Article  Google Scholar 

  • Channing, C. P.; Ledwitz-Rigby, F. Methods for assessing hormone-mediated differentiation of ovarian cells in culture and in short term incubations. Methods Enzymol. 39:183–230; 1975.

    Article  PubMed  CAS  Google Scholar 

  • Chapekar, T. N.; Malik, A. K. The AIMS/GRXVIII cell line: spontaneous transformation of hormonally induced primary cells derived from goat ovarian granulosa. Pathobiology 59:345–350; 1991.

    PubMed  CAS  Google Scholar 

  • Chomczynski, P.; Sacchi, N. Single-step method of RNA isolation by acid guanidinium thiocyanate-phenol-chloroform extraction. Anal. Biochem. 162:156; 1987.

    Article  PubMed  CAS  Google Scholar 

  • Chou, J. Y. Differentiated mammalian cell lines immortalized by temperature-sensitive tumor viruses. Mol. Endocrinol. 3:1511–1514; 1989.

    PubMed  CAS  Google Scholar 

  • Cone, J. L.; Brown, D. R.; Delarco, J. E. An improved method of purification of transforming growth factor, type beta from platelets. Anal. Biochem. 168:71–74; 1988.

    Article  PubMed  CAS  Google Scholar 

  • De Winter, J. P.; Timmerman, M. A.; Vanderstichele, H. M. J., et al. Testicular Leydig cells in vitro secrete only inhibin α-subunits, whereas Leydig cell tumors can secrete bioactive inhibin. Mol. Cell. Endocrinol. 83:105–115; 1992.

    Article  PubMed  Google Scholar 

  • Dorrington, J. H.; Bendell, J. J.; Chuma, A., et al. Actions of growth factors in the follicle. J. Steroid Biochem. 27:1–3; 1987.

    Article  Google Scholar 

  • Dorrington, J.; Chuma, A. V.; Bendell, J. J. Transforming growth factor β and follicle-stimulating hormone promote rat granulosa cell proliferation, Endocrinology 123:353–359; 1988.

    PubMed  CAS  Google Scholar 

  • Dupont, A. G.; Gerlo, E.; Van der Niepen, P., et al. Renal and pharmacodynamic effects of torasemide and furasemide in normal man. Arzneimittel-Forschung 38:172–175; 1988.

    PubMed  CAS  Google Scholar 

  • Eckhart, W. Oncogenes of DNA tumor viruses: papovaviruses. In: Weinberg, R. A., ed. Oncogenes and the molecular origins of cancer. Cold Spring Harbor, NY: Cold Spring Harbor Laboratory Press; 1989:223–238.

    Google Scholar 

  • Erisman, M. D.; Astrin, S. M. The myc oncogene. In: Reddy, E. P.; Skalka, A. M.; Curran, T., eds. The oncogene handbook. Amsterdam, Elsevier Science Publishers B.V. (Biomedical Div.); 1988:341–379.

    Google Scholar 

  • Felger, P. H.; Gadek, T. R.; Holm, M., et al. Lipofection: a highly efficient, lipid mediated DNA-transfection procedure. Proc. Natl. Acad. Sci. USA 84:7413–7417; 1987.

    Article  Google Scholar 

  • Fitz, T. A.; Wah, R. M.; Schmidt, W. A., et al. Physiologic characterization of transformed and cloned rat granulosa cells. Biol. Reprod. 40:250–258; 1989.

    Article  PubMed  CAS  Google Scholar 

  • Geisthovel, F.; Moretti-Rojas, I.; Rojas, F. J., et al. Insulin-like growth factors and thecal-granulosa-cell function. Human Reprod. 5:785–799; 1990.

    CAS  Google Scholar 

  • Gillies, R. J.; Didier, N.; Denton, M. Determination of cell number in monolayer cultures. Anal. Biochem. 159:109–113; 1986.

    Article  PubMed  CAS  Google Scholar 

  • Hillensjö, T.; Magnusson, C.; Svensson, U., et al. Effect of luteinizing hormone and follicle-stimulating hormone on progesterone synthesis by cultured rat cumulus cells. Endocrinology 108:1920–1924; 1981.

    PubMed  Google Scholar 

  • Hsueh, A. J. W.; Adashi, E. Y.; Jones, P. B. C., et al. Hormonal regulation of the differentiation of cultured ovarian granulosa cells. Endocrinol. Rev. 5:76–126; 1984.

    CAS  Google Scholar 

  • Hunter, T. Cooperation between oncogenes. Cell 64:249–270; 1991.

    Article  PubMed  CAS  Google Scholar 

  • Hurlin, P. J.; Maher, V. M.; McCormick, J. J. Malignant transformation of human fibroblasts by expression of a transfected T24 HRAS oncogene. Proc. Natl. Acad. Sci. USA 86:187–191; 1989.

    Article  PubMed  CAS  Google Scholar 

  • Jones, P. B. C.; Welsh, T. H., Jr.; Hsueh, A. J. W. Regulation of ovarian progestin production by EGF in cultured ovarian cells. J. Biol. Chem. 257:11268–11273; 1982.

    PubMed  CAS  Google Scholar 

  • Laekeman, G. M.; Vergote, I. B.; Keersmaekers, G. M., et al. Prostacyclin and thromboxane in benign and malignant breast tumours. Br. J. Cancer 54:431–437; 1986.

    PubMed  CAS  Google Scholar 

  • Langhout, D. J.; Spicer, L. J.; Geisert, R. D. Development of a culture system for bovine granulosa cells: effects of growth hormone, estradiol and gonadotropins on cell proliferation, steroidogenesis, and protein synthesis. J. Anim. Sci. 69:3321–3334; 1991.

    PubMed  CAS  Google Scholar 

  • Lee, V. W. K.; Colvin, N.; Quigg, H., et al. A rapid, sensitive and reliable assay for inhibin bioactivity. Aust. J. Biol. Sci. 40:105–113; 1987.

    CAS  Google Scholar 

  • MacPherson, I. Soft agar technique. In: Kruse, P. F.; Patterson, M. K., eds. Tissue culture methods and applications. New York, Academic Press; 1973:276–280.

    Google Scholar 

  • May, J. V.; Frost, J. P.; Schomberg, D. W. Differential effects of epidermal growth factor, somatomedin C: insulin-like growth factor I, and transforming growth factor β on porcine granulosa cell deoxyribonucleic acid synthesis and cell proliferation. Endocrinology 123:168–179; 1988.

    PubMed  CAS  Google Scholar 

  • Michalovitz, D.; Fischer-Fantuzzi, L.; Vesco, C., et al. Activated Ha-ras can cooperate with defective simian virus 40 in the transformation of nonestablished rat embryo fibroblasts. J. Virol. 61:2648–2654; 1987.

    PubMed  CAS  Google Scholar 

  • Mondschein, J. S.; Canning, S. F.; Hammond, J. M. Effects of transforming growth factor β on the production of immunoreactive insulin-like growth factor I and progesterone and on [3H]thymidine incorporation in porcine granulosa cell cultures. Endocrinology 123:1970–1976; 1988.

    PubMed  CAS  Google Scholar 

  • Mondschein, J. S.; Canning, S. F.; Miller, D. Q., et al. Insulin-like growth factors (IGFs) as autocrine/paracrine regulators of granulosa cell differentiation and growth: studies with neutralizing antibody to IGF-I. Biol. Reprod. 46:79–85; 1989.

    Article  Google Scholar 

  • Moses, H. L.; Yang, E. Y.; Pietenpol, J. A. TGF-β stimulation and inhibition of cell proliferation: new mechanistic insights. Cell 63:245–247; 1990.

    Article  PubMed  CAS  Google Scholar 

  • Poretzky, L.; Kalin, M. F. The gonadotropic function of insulin. Endocrinol. Rev. 8:132–141; 1987.

    Google Scholar 

  • Rao, I. M.; Mills, T. M.; Anderson, E., et al. Heterogeneity in granulosa cells of developing rat follicles. Anat. Rec. 229:177–185; 1991.

    Article  PubMed  CAS  Google Scholar 

  • Rodgers, R. J.; Stuchbery, S. J.; Findlay, J. K. Inhibin mRNAs in ovine and bovine ovarian follicles and corpora lutea throughout the estrous and gestation. Mol. Cell. Endocrinol. 62:95–101; 1989.

    Article  PubMed  CAS  Google Scholar 

  • Sambrook, J.; Fritsch, E. F.; Maniatis, T. Molecular cloning: a laboratory manual. Cold Spring Harbor, NY: Cold Spring Harbor Laboratory Press; 1989.

    Google Scholar 

  • Schwab, M. The myc-box oncogenes. In: Reddy, E. P.; Skalka, A. M.; Curran, T., eds. The oncogene handbook. Amsterdam, Elsevier Science Publishers B.V. (Biomedical Division); 1988:381–391.

    Google Scholar 

  • Shay, J. W.; Wright, W. E.; Werbin, H. Defining the molecular mechanisms of human cell immortalization. Biochim. Biophys. Acta 1072:1–7; 1991.

    PubMed  CAS  Google Scholar 

  • Stein, L. S.; Stoica, G.; Tilley, R., et al. Rat ovarian granulosa cell culture: a model system for the study of cell-cell communication during multistep transformation. Cancer Res. 51:696–706; 1991.

    PubMed  CAS  Google Scholar 

  • Suh, B.; Amsterdam, A. Establishment of highly steroidogenic granulosa cell lines by cotransfection with SV40 and Ha-ras oncogene: induction of steroidogenesis by cyclic adenosine 3′-5′-monophosphate and its suppression by phorbol ester. Endocrinology 127:2489–2500; 1990.

    Article  PubMed  CAS  Google Scholar 

  • Van der Hurk, R.; Dijkstra, G. An immunohistochemical study of bovine antral follicles, with special attention to non-atretic follicles with and without atypical granulosa cells. Vet Q. 14:148–151; 1992.

    PubMed  Google Scholar 

  • Vergote, I. B.; Laekeman, G. M.; Keersmaekers, G. M., et al. Prostaglandin F2α in benign and malignant breast tumours. Br. J. Cancer 51:827–836; 1985.

    PubMed  CAS  Google Scholar 

  • Verhoeven, G.; Dierckx, P.; De Moor, P. Stimulatory effect of neurotransmitters on the aromatization of testosterone by Sertoli cell-enriched cultures. Mol. Cell. Endocrinol. 13:241–253; 1979.

    Article  PubMed  CAS  Google Scholar 

  • Verhoeven, G.; Koninckx, P.; De Moor, P. Androgen and progesterone production in cultured interstitial cells derived from immature rat testes. J. Steroid Biochem. 17:319–330; 1982.

    Article  PubMed  CAS  Google Scholar 

  • Wilkinson, M. RNA isolation: a mini prep method. Nucleic Acid Res. 16:10933; 1988.

    Article  PubMed  CAS  Google Scholar 

  • Yu, J.; Shao, L.; Lemas, V., et al. Importance of FSH-releasing protein and inhibin in erythrodifferentiation. Nature 330:765–767; 1987.

    Article  PubMed  CAS  Google Scholar 

  • Zhiwen, Z.; Findlay, J. K.; Carson, R. S., et al. Transforming growth factor β enhances basal and FSH-stimulated inhibin production by rat granulosa cells in vitro. Mol. Cell. Endocrinol. 58:161–166; 1988.

    Article  Google Scholar 

  • Zilberstein, M.; Chou, J. Y.; Lowe, W. L., et al. Expression of insulin-like growth factor-I and its receptor by SV40 transformed rat granulosa cells. Mol. Endocrinol. 3:1488–1497; 1989.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Briers, T.W., Van De Voorde, A. & Vanderstichele, H. Characterization of immortalized mouse granulosa cell lines. In Vitro Cell Dev Biol - Animal 29, 847–854 (1993). https://doi.org/10.1007/BF02631362

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02631362

Key words

Navigation