Skip to main content
Log in

Establishment and characterization of an immortalized but non-transformed human prostate epithelial cell line: BPH-1

  • Cellular Models
  • Published:
In Vitro Cellular & Developmental Biology - Animal Aims and scope Submit manuscript

Summary

This report describes the development and characterization of an epithelial cell line (BPH-1) from human prostate tissue obtained by transurethral resection. Primary epithelial cell cultures were immortalized with SV40 large T antigen. One of the isolated clones was designated BPH-1. These cells have a cobblestone appearance in monolayer culture and are non-tumorigenic in nude mice following subcutaneous injection or subrenal capsule grafting. They express the SV40 large T antigen and exhibit increased levels of p53, as determined by immunocytochemistry. Cytogenetic analysis by G-banding demonstrated an aneuploid karyotype with a modal chromosome number of 76 (range 71 to 79,n=28) and 6 to 8 marker chromosomes. Some structurally rearranged chromosomes were observed, but the Y chromosome was normal. The expressed cytokeratin profile was consistent with a prostatic luminal epithelial cell. This profile was the same as that of primary prostatic epithelial cultures from which the BPH-1 cells were derived. In serum-free culture in plastic dishes epidermal growth factor (EGF), transforming growth factor (TGF)-α, fibroblast growth factor (FGF) 1 (aFGF), and FGF 7 (KGF) induced increased proliferation in these cells whereas FGF 2 (bFGF), TGF-β1, and TGF-β2 inhibited proliferative activity. Testosterone had no direct effect on the proliferative rate of BPH-1 cells. 5α-Reductase, 3α-hydroxysteroid oxidoreductase, and 17β-hydroxy-steroid oxidoreductase activities were detected in BPH-1 cells. Expression of androgen receptors and the secretory markers, prostate specific antigen and prostatic acid phosphatase, were not detectable by immunocytochemistry, biochemical assay, or RT-PCR analysis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Alarid, E. T.; Rubin, J. S.; Young, P., et al. Keratinocyte growth factor functions in epithelial induction during seminal vesicle development. Proc. Natl. Acad. Sci. USA 91:1074–1078; 1994.

    Article  PubMed  CAS  Google Scholar 

  2. Anderson, K. M.; Liao, S. Selective retention of dihydrotestosterone by prostatic nuclei. Nature 219:277–279; 1968.

    Article  PubMed  CAS  Google Scholar 

  3. Aumüller, G. Morphologic and endocrine aspects of prostatic function. Prostate 4:195–214; 1983.

    Article  PubMed  Google Scholar 

  4. Bartek, J.; Bartkova, J.; Kyprianou, N., et al. Efficient immortalization of luminal epithelial cells from human mammary gland by introduction of simian virus 40 large tumor antigen with a recombinant retrovirus. Proc. Natl. Acad. Sci. USA 88:3520–3524; 1991.

    Article  PubMed  CAS  Google Scholar 

  5. Bottaro, D. P.; Fortney, E.; Rubin, J. S., et al. A keratinocyte growth factor receptor-derived peptide antagonist identifies part of the ligand binding site. J. Biol. Chem. 268:9180–9183; 1993.

    PubMed  CAS  Google Scholar 

  6. Brothman, A. R.; Peehl, D. M.; Patel, A. M., et al. Frequency and pattern of karyotypic abnomalities in human prostate cancer. Cancer Res. 50:3795–3803; 1990.

    PubMed  CAS  Google Scholar 

  7. Burns, J.; Barton, C.; Wynford-Thomas, D., et al. In vitro transformation of epithelial cells by ras oncogenes. Epith. Cell Biol. 2:26–43; 1993.

    CAS  Google Scholar 

  8. Chiefetz, S.; Weatherbee, J. A.; Tsang, M.L-S., et al. The transforming growth factorβ system, a complex pattern of cross-reactive ligands and receptors. Cell 48:409–415; 1987.

    Article  Google Scholar 

  9. Coffey, D. S. Androgen action and the sex accessory tissues. In: Knobil, E.; Neill, J., ed. The physiology of reproduction. New York: Raven Press; 1988:1081–1119.

    Google Scholar 

  10. Connolly, J. M.; Rose, D. P. Secretion of epidermal growth factor and related polypeptides by the DU 145 human prostate cancer cell line. Prostate 15:177–186; 1989.

    Article  PubMed  CAS  Google Scholar 

  11. Cooke, P. S.; Young, P.; Cunha, G. R. Androgen receptor expression in developing male reproductive organs. Endocrinology 128:2867–2873; 1991.

    PubMed  CAS  Google Scholar 

  12. Cowan, R. A.; Cowan, S. K.; Grant, J. K., et al. Biochemical investigations of separated epithelium and stroma from benign hyperplastic prostatic tissue. J. Endocrinol. 74:111–120; 1977.

    PubMed  CAS  Google Scholar 

  13. Cunha, G. R.; Alarid, E. T.; Turner, T., et al. Normal and abnormal development of the male urogenital tract: role of androgens, mesenchymal-epithelial interactions and growth factors. J. Andrology 13:465–475; 1992.

    CAS  Google Scholar 

  14. Cunha, G. R.; Reese, B. A.; Sekkingstad, M. Induction of nuclear androgen-binding sites in epithelium of the embryonic urinary bladder by mesenchyme of the urogenital sinus of embryonic mice. Endocrinology 107:1767–1770; 1980.

    PubMed  CAS  Google Scholar 

  15. DeKlerk, D. P.; Coffey, D. S.; Ewing, L. L., et al. Comparison of spontaneous and experimentally induced canine prostatic hyperplasia. J. Clin. Invest. 64:842–849; 1979.

    PubMed  CAS  Google Scholar 

  16. Deshpande, N.; Hallowes, R. C.; Cox, S., et al. Divergent effects of interferons on the growth of human benign prostatic hyperplasia cells in primary culture. J. Urol. 141:157–160; 1989.

    PubMed  CAS  Google Scholar 

  17. Donjacour, A. A.; Cunha, G. R. Assessment of prostatic protein secretion in tissue recombinants made of urogenital sinus mesenchyme and urothelium from normal or androgen-insensitive mice. Endocrinology 131:2342–2350; 1993.

    Article  Google Scholar 

  18. Dunning, W. F. Prostate cancer in the rat. Natl. Cancer Inst. Monogr. 12:351–370; 1963.

    PubMed  CAS  Google Scholar 

  19. Fowler, J. J.; Lau, J.; Ghosh, L., et al. Epidermal growth factor and prostatic carcinoma: an immunohistochemical study. J. Urol. 139:857–861; 1988.

    PubMed  Google Scholar 

  20. Gregory, H.; Willshire, I. R.; Kavanagh, J. P., et al. Urogastrone-epidermal growth factor concentrations in prostatic fluid of normal individuals and patients with benign prostatic hypertrophy. Clin. Sci. 70:359–363; 1986.

    PubMed  CAS  Google Scholar 

  21. Habib, F. K.; Benyon, L.; Chisholm, G. D., et al. The distribution of 5α-reductase and 3α(β)-hydroxysteroid dehydrogenase activities in the hyperplastic human prostate gland. Steroids 41:41–53; 1983.

    Article  PubMed  CAS  Google Scholar 

  22. Habib, F. K.; Busuttil, A.; Robinson, R. A., et al. 5α-Reductase activity in human prostate cancer is related to the histological differentiation of the tumour. Clin. Endocrinol. 23:431–438; 1985.

    CAS  Google Scholar 

  23. Hallowes, R. C.; Bone, E. J.; Jones, W. A new dimension in the culture of human breast. In: Richards, J. R.; Rajan, K. T., ed. Tissue culture in medical research. Oxford, England: Pergamon Press; 1980:213–220.

    Google Scholar 

  24. Hallowes, R. C.; Cox, S.; Hayward, S., et al. Effects of flutamide and hydroxy-flutamide on the growth of human benign prostatic hyperplasia cells in primary culture: a preliminary report. Anticancer Res. 11:1799–1806; 1991.

    PubMed  CAS  Google Scholar 

  25. Hayward, S.; Cox, S.; Mitchell, I., et al. The effects of interferons on the activity ofα-glycerolphosphate dehydrogenase in benign prostatic hyperplasia cells in primary culture. J. Urol. 138:648–653; 1987.

    PubMed  CAS  Google Scholar 

  26. Hayward, S. W. The role of stroma in prostate epithelial function: development of a model system. London: Council for National Academic Awards; 1992. Thesis.

    Google Scholar 

  27. Hayward, S. W.; Del Buono, R.; Hall, P. A., et al. A functional model of human prostate epithelium: the role of androgens and stroma in architectural organisation and the maintenance of differentiated secretory function. J. Cell Sci. 102:361–372; 1992.

    PubMed  CAS  Google Scholar 

  28. He, W. W.; Kumar, M. V.; Tindall, D. J. A frameshift mutation in the androgen receptor gene causes complete androgen insensitivity in the testicular-feminized mouse. Nucleic Acids Res. 19:2373–2378; 1991.

    Article  PubMed  CAS  Google Scholar 

  29. Horoszewicz, J. S.; Leong, S. S.; Ming, Chu T., et al. The LNCaP cell line—a new model for studies on human prostatic carcinoma. Prog. Clin. Biol. Res. 37:115–132; 1980.

    PubMed  CAS  Google Scholar 

  30. Husmann, D. A.; McPhaul, M.; Wilson, J. D. Androgen receptor expression in the developing rat prostate is not altered by castration, flutamide, or suppression of the adrenal axis. Endocrinology 128:1902–1906; 1991.

    PubMed  CAS  Google Scholar 

  31. Isaacs, J. T. Development and characteristics of the available animal model systems for the study of prostatic cancer. In: Coffey, D. S.; Bruchovsky, N.; Gardner, W. W., Jr., et al., eds. Current concepts and approaches to the study of prostate cancer. New York: A. R. Liss; 1987:513–576.

    Google Scholar 

  32. Isaacs, J. T.; Barrack, E. R.; Isaacs, W. B., et al. The relationship of cellular structure and function: the matrix system. In: Murphy, G. P.; Sandberg, A. A.; Karr, J. P., eds. The prostatic cell: structure and function. New York: Alan R. Liss; 1981:1–24.

    Google Scholar 

  33. Jones, E.; Harper, M. Studies on the proliferation, secretory activities, and epidermal growth factor receptor expression in benign prostatic hyperplasia explant cultures. Prostate 20:133–149; 1992.

    Article  PubMed  CAS  Google Scholar 

  34. Kaighn, M. E.; Lechner, J. F.; Babcock, M. S., et al. The Pasadena cell lines. Prog. Clin. Biol. Res. 37:85–109; 1980.

    PubMed  CAS  Google Scholar 

  35. Kishi, H.; Ishibe, T.; Usui, T., et al. Epidermal growth factor (EGF) in seminal plasma and prostatic gland: a radioreceptor assay. Arch. Androl. 20:243–249; 1988.

    PubMed  CAS  Google Scholar 

  36. Kissane, J. M., editor. Andersons pathology, 7th edition. Saint Louis, MO: Mosby; 1985.

    Google Scholar 

  37. Kyprianou, N.; Isaacs, J. T. Identification of a cellular receptor for transforming growth factor-beta in rat ventral prostate and its negative regulation by androgens. Endocrinology 123:2124–2131; 1988.

    PubMed  CAS  Google Scholar 

  38. Kyprianou, N.; Isaacs, J. T. Expression of transforming growth factor-β in the rat ventral prostate during castration-induced programmed cell death. Mol. Endocrinol. 3:1515–1522; 1989.

    Article  PubMed  CAS  Google Scholar 

  39. Lin, J.-Y.; Simmons, D. T. The ability of large T antigen to complex with p53 is necessary for the increased life span and partial transformation of human cells by simian virus 40. J. Virol. 65:6447–6453; 1991.

    PubMed  CAS  Google Scholar 

  40. Ludlow, J. W. Interactions between SV40 large-tumor antigen and the growth suppressor proteins pRB and p53. FASEB J. 7:866–871; 1993.

    PubMed  CAS  Google Scholar 

  41. MacDonald, A.; Chisholm, G. D.; Habib, F. K. Production and response of a human prostatic cancer line to transforming growth factor-like molecules. Br. J. Cancer 62:579–584; 1990.

    PubMed  CAS  Google Scholar 

  42. Maddy, S.; Chisholm, G.; Busuttil, A., et al. Epidermal growth factor receptors in human prostate cancer: correlation with histological differentiation of the tumour. Br. J. Cancer 60:41–44; 1989.

    PubMed  CAS  Google Scholar 

  43. Martikainen, P. M.; Mäkelä, S. I.; Santti, R. S. S., et al. Interaction of male and female sex hormones in cultured rat prostate. Prostate 11:291–303; 1988.

    Google Scholar 

  44. Massagué, J. Transforming growth factor-α: a model for membrane-anchored growth factors. J. Biol. Chem. 265:21393–21396; 1990.

    PubMed  Google Scholar 

  45. McKeehan, W. L. Growth factor receptors and prostate cell growth. In: Isaacs, J. T., ed. Prostate cancer: cell and molecular mechanisms in diagnosis and treatment. Cold Spring Harbor, NY: Cold Spring Harbor Laboratory Press; 1991:165–176.

    Google Scholar 

  46. McKeehan, W. L.; Adams, P. S. Heparin-binding growth factor/prostatropin attenuates inhibition of rat prostate tumor epithelial cell growth by transforming growth factor type beta. In Vitro Cell. Dev. Biol. 24:243–246; 1988.

    Article  PubMed  CAS  Google Scholar 

  47. McKeehan, W. L.; Adams, P. S.; Rosser, M. P. Direct mitogenic effects of insulin, epidermal growth factor, glucocorticoid, cholera toxin, unknown pituitary factors and possibly prolactin, but not androgen, on normal rat prostate epithelial cells in serum-free, primary cell culture. Cancer Res. 44:1998–2010; 1984.

    PubMed  CAS  Google Scholar 

  48. McNeal, J. E. Prostate anatomy and BPH morphogenesis. Prog. Clin. Biol. Res. 145:27–54; 1984.

    PubMed  CAS  Google Scholar 

  49. Merchant, D. J.; Clarke, S. M.; Ives, K., et al. Primary explant culture: an in vitro model of the human prostate. Prostate 4:523–542; 1988.

    Article  Google Scholar 

  50. Mickey, D. D.; Stone, K. R.; Wunderli, H., et al. Characterization of a human prostate adenocarcinoma cell line (DU145) as a monolayer culture and as a solid tumour in athymic mice. Prog. Clin. Biol. Res. 37:67–84; 1980.

    PubMed  CAS  Google Scholar 

  51. Montpetit, M.; Abrahams, P.; Clark, A. F., et al. Androgen-independent epithelial cells of the rat ventral prostate. Prostate 12:13–28; 1988.

    Article  PubMed  CAS  Google Scholar 

  52. Mori, H. M.; Maki, K.; Oishi, M., et al. Increased expression of genes for basic fibroblast growth factor and transforming growth factor typeβ2 in human benign prostatic hyperplasia. Prostate 16:71–80; 1990.

    Article  PubMed  CAS  Google Scholar 

  53. Morris, G.; Dodd, J. Epidermal growth factor receptor mRNA levels in human prostatic tumors and cell lines. J. Urol. 143:1272–1274; 1990.

    PubMed  CAS  Google Scholar 

  54. Narayan, P.; Dahiya, R. Establishment and characterization of epithelial cell line from human prostatic adenocarcinoma (ND-1). J. Urol. 148:1600–1604; 1992.

    PubMed  CAS  Google Scholar 

  55. Neubauer, B. L.; Chung, L. W. K.; McCormick, K. A., et al. Epithelial-mesenchymal interactions in prostatic development. II. Biochemical observations of prostatic induction by urogenital sinus mesenchyme in epithelium of the adult rodent urinary bladder. J. Cell. Biol. 96:1671–1676; 1983.

    Article  PubMed  CAS  Google Scholar 

  56. Nurcombe, V.; Ford, M. D.; Wildschut, J. A., et al. Developmental regulation of neural response to FGF-1 and FGF-2 by heparan sulfate proteoglycan. Science 260:103–106; 1993.

    Article  PubMed  CAS  Google Scholar 

  57. Orlowski, J.; Clark, A. F. Epithelial-stromal interactions in the regulation of rat ventral prostate function: identification and characterisation of pathways for androgen metabolism in isolated cell types. Endocrinology 128:872–884; 1991.

    PubMed  CAS  Google Scholar 

  58. Partanen, A. M. Epidermal growth factor and transforming growth factor-α in the development of epithelial-mesenchymal organs of the mouse. Curr. Topics Dev. Biol. 24:31–55; 1990.

    Article  CAS  Google Scholar 

  59. Peehl, D. M.; Stamey, T. A. Growth responses of normal, benign hyperplastic, and malignant human prostatic epithelial cells in vitro to cholera toxin, pituitary extract, and hydrocortizone. Prostate 8:51–61; 1986.

    Article  PubMed  CAS  Google Scholar 

  60. Peehl, D. M.; Stamey, T. A. Serum-free growth of adult human prostatic epithelial cells. In Vitro Cell. Dev. Biol. 22:82–90; 1986.

    Article  PubMed  CAS  Google Scholar 

  61. Sambrook, J.; Fritsch, E.; Maniatis, T. Molecular cloning: a laboratory manual. Cold Spring Harbor, NY: Cold Spring Harbor Press; 1989.

    Google Scholar 

  62. Sandberg, A. A. Chromosomal abnormalities and related events in prostate cancer. Human Pathol. 23:368–380; 1992.

    Article  CAS  Google Scholar 

  63. St Arnaud, R.; Poyet, P.; Walder, P., et al. Androgens modulate epidermal growth factor receptor levels in the rat ventral prostate. Mol. Cell. Endocrinol. 56:21–27; 1988.

    Article  PubMed  CAS  Google Scholar 

  64. Steiner, M. S. Role of peptide growth factors in the prostate: a review. Urology 42:99–110; 1993.

    Article  PubMed  CAS  Google Scholar 

  65. Sunde, A.; Rosness, P. A.; Eik-Nes, K. B. Metabolism of 5α-androstane-3β, 17β-diol to 17β-hydroxy-5α-androstan-3α, 17β-diol in the rat. Biochem. Biophys. Acta 574:240–247; 1979.

    PubMed  CAS  Google Scholar 

  66. Traish, A. M.; Wotiz, H. H. Prostatic epidermal growth factor receptors and their regulation by androgens. Endocrinology 121:1461–1467; 1987.

    Article  PubMed  CAS  Google Scholar 

  67. Verhagen, A. P. M.; Aalders, T. W.; Ramaekers, F. C. S., et al. Differential expression of keratins in the basal and luminal compartments of rat prostatic epithelium during degeneration and regeneration. Prostate 13:25–38; 1988.

    Article  PubMed  CAS  Google Scholar 

  68. Vindelov, L.; Christensen, I. J.; Nissen, N. I. A detergent-trypsin method for the preparation of nuclei for flow cytometric DNA analysis. Cytometry 3:323–327; 1983.

    Article  PubMed  CAS  Google Scholar 

  69. Voigt, K. D.; Bartsch, W. The role of tissue steroids in benign hyperplasia and prostate cancer. Urology A 26:349–357; 1987.

    CAS  Google Scholar 

  70. Walsh, P. C. Human benign prostatic hyperplasia: etiological considerations. Prog. Clin. Biol. Res. 145:1–26; 1984.

    PubMed  CAS  Google Scholar 

  71. Wilson, J. D.; Gloyna, R. E. The intranuclear metabolism of testosterone in the accessory organs of reproduction. Rec. Prog. Horm. Res. 26:309–336; 1970.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hayward, S.W., Dahiya, R., Cunha, G.R. et al. Establishment and characterization of an immortalized but non-transformed human prostate epithelial cell line: BPH-1. In Vitro Cell Dev Biol - Animal 31, 14–24 (1995). https://doi.org/10.1007/BF02631333

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02631333

Key words

Navigation