Skip to main content
Log in

Glycosaminoglycans enhance phorbol ester-induced proteolytic activity and angiogenesis in vitro

  • Growth, Differentiation, And Senescence
  • Published:
In Vitro Cellular & Developmental Biology - Animal Aims and scope Submit manuscript

Summary

It has been reported that endothelial cells suspended in three-dimensional type I collagen gels can be induced to undergo tube formation by 12-o-tetradecanoyl phorbol 13-acetate (TPA). In this report, we show that TPA-induced endothelial cell tube formation can be further enhanced by the addition of other matrix components in the collagen gels. In the presence of TPA, both high molecular weight hyaluronate and chondroitin sulfate elicit a dose-dependent stimulation of tube formation. The enhanced tube formation appears to be due to an increase in the number of cells undergoing morphogenesis as the average length per tube is not obviously increased. Concomitant with the increased cell morphogenesis, there is an increase in proteolytic activity secreted by the cells. Treatment of cells with cycloheximide suppresses hyaluronate- and chondroitin sulfate-enhanced cell morphogenesis and proteolytic activity suggesting that new protein synthesis, perhaps proteases, is necessary for endothelial cell morphogenesis. The possible role of the production of proteolytic activity in endothelial cell tube formation is discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Berg, R. A. Determination of 3- and 4-hydroxyproline. In: Cunningham, L. W.; Frederiksen, D. W. eds. Methods in enzymology Vol. 82. New York: Academic Press; 1982:372–398.

    Google Scholar 

  2. Berse, B.; Brown, L. F.; Vander-Water, L., et al. Vascular permeability factor (vascular endothelial growth factor) gene is expressed differentially in normal tissues, macrophages, and tumors. Mol. Biol. Cell 3:211–220; 1992.

    PubMed  CAS  Google Scholar 

  3. Breier, G.; Albrecht, U.; Sterrer, S., et al. Expression of vascular endothelial growth factor during embryonic angiogenesis and endothelial cell differentiation. Development 114:521–532; 1992.

    PubMed  CAS  Google Scholar 

  4. Crumley, G.; Bellot, F.; Kaplow, J. M., et al. High-affinity binding and activation of a truncated FGF receptor by both aFGF and bFGF. Oncogene 6:2255–2262; 1991.

    PubMed  CAS  Google Scholar 

  5. Dionne, C. A.; Crumley, G.; Bellot, F., et al. Cloning and expression of two distinct high affinity receptors cross-reacting with acidic and basic fibroblast growth factor. EMBO J. 9:2685–2692; 1990.

    PubMed  CAS  Google Scholar 

  6. Doctrow, S. R.; Folkman, J. Protein kinase C activators suppress stimulation of capillary endothelial cell growth by angiogenic endothelial mitogens. J. Cell Biol. 104:679–687; 1987.

    Article  PubMed  CAS  Google Scholar 

  7. Folkman, J. What is the role of endothelial cells in angiogenesis? Lab. Invest. 51:601–604; 1984.

    PubMed  CAS  Google Scholar 

  8. Folkman, J.; Klagsbrun, M. Angiogenic factors. Science 235:442–447; 1987.

    Article  PubMed  CAS  Google Scholar 

  9. Folkman, J.; Shing, Y. Angiogenesis. J. Biol. Chem. 267:10931–10934; 1992.

    PubMed  CAS  Google Scholar 

  10. Folkman, J.; Watson, K.; Ingber, D., et al. Induction of angiogenesis during the transition from hyperplasia to neoplasia. Nature 339:58–61; 1989.

    Article  PubMed  CAS  Google Scholar 

  11. Grant, D. S.; Tashiro, K.-I.; Segui-Real, B., et al. Basic fibroblast growth factor binds to subendothelial extracellular matrix and is released by heparitinase and heparin-like molecules. Cell 58:933–943; 1989.

    Article  PubMed  CAS  Google Scholar 

  12. Grant, D. S.; Lelkes, P. I.; Fukuda, K., et al. Intracellular mechanisms involved in basement membrane induced blood vessel differentiation in vitro. In Vitro Cell. Dev. Biol. 27A:327–336; 1991.

    PubMed  CAS  Google Scholar 

  13. Ingber, D. E.; Madri, J. A.; and Folkman, J. A possible mechanism for inhibition of angiogenesis by angiostatic steroids: induction of capillary basement membrane dissolution. Endocrinology 119:1768–1775; 1986.

    Article  PubMed  CAS  Google Scholar 

  14. Iruela-Arispe, M. L.; Hasselaar, P.; Sage, H. Differential expression of extracellular proteins is correlated with angiogenesis in vitro. Lab. Invest. 64:174–186; 1991.

    PubMed  CAS  Google Scholar 

  15. Jackson, R. L.; Busch, S. J.; Cardin, A. D. Glycosaminoglycans: molecular properties, protein interactions, and role in physiological processes. Physiol. Rev. 71:481–539; 1991.

    PubMed  CAS  Google Scholar 

  16. Mignatti, P.; Tsuboi, R.; Robbins, E., et al. In vitro angiogenesis on the human amniotic membrane: requirement for basic fibroblast growth factor-induced proteinases. J. Cell Biol. 108:671–682; 1989.

    Article  PubMed  CAS  Google Scholar 

  17. Montesano, R.; Orci, L. Tumor-promoting phorbol esters induce angiogenesis in vitro. Cell 42:469–477; 1985.

    Article  PubMed  CAS  Google Scholar 

  18. Montesano, R.; Vassalli, J.-D.; Baird, A., et al. Basic fibroblast growth factor induces angiogenesis in vitro. Proc. Natl. Acad. Sci. USA. 83:7297–7301; 1986.

    Article  PubMed  CAS  Google Scholar 

  19. Montesano, R.; Pepper, M. S.; Belin, D., et al. Induction of angiogenesis in vitro by vanadate, an inhibitor of phosphotyrosine phosphatases. J. Cell. Physiol. 134:460–466; 1988.

    Article  PubMed  CAS  Google Scholar 

  20. Morris, P. B.; Hida, T.; Blackshear, P. J., et al. Tumor-promoting phorbol esters induce angiogenesis in vivo. Am. J. Physiol. 254:C318-C322; 1988.

    PubMed  CAS  Google Scholar 

  21. Moses, M. A.; Langer, R. Inhibitors of angiogenesis. Bio/Technology 9:630–634; 1991.

    Article  PubMed  CAS  Google Scholar 

  22. Orlidge, A.; D’Amore, P. A. Cell specific effects of glycosaminoglycans on the attachment and proliferation of vascular wall components. Microvasc. Res. 81:41–53; 1987.

    Google Scholar 

  23. Pepper, M. S.; Belin, D.; Monteasano, R., et al. Transforming growth factor-beta 1 modulates basic fibroblast growth factor-induced proteolytic and angiogenic properties of endothelial cells in vitro. J. Cell. Biol. 111:743–755; 1990.

    Article  PubMed  CAS  Google Scholar 

  24. Ruoslahti, E. Proteoglycans in cell regulation. J. Biol. Chem. 264:13369–13372; 1989.

    Google Scholar 

  25. Schreiber, A. B.; Winkler, M. E.; Derynck, R. Transforming growth factor-α: a more potent angiogenic mediator than epidermal growth factor. Science 232:1250–1253; 1986.

    Article  PubMed  CAS  Google Scholar 

  26. Thomas, K. A.; Rios-Candelore, M.; Gimenez-Gallego, G., et al. Pure brain-derived acidic fibroblast growth factor is a potent angiogenic vascular endothelial cell mitogen with sequence homology to interleukin I. Proc. Natl. Acad. Sci. USA 82:6409–6413; 1985.

    Article  PubMed  CAS  Google Scholar 

  27. West, D. C.; Kumar, S. The effect of hyaluronate and its oligosaccharides on endothelial cell proliferation and monolayer integrity. Exp. Cell Res. 183:179–196; 1989.

    Article  PubMed  CAS  Google Scholar 

  28. Yang, E. Y.; Moses, H. L. Transforming growth factor-β1-induced changes in cell migration, proliferation, and angiogenesis in the chicken chorioallantoic membrane. J. Cell Biol. 111:731–741; 1990.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wang, DY., Kao, CH., Yang, V.C. et al. Glycosaminoglycans enhance phorbol ester-induced proteolytic activity and angiogenesis in vitro. In Vitro Cell Dev Biol - Animal 30, 777–782 (1994). https://doi.org/10.1007/BF02631301

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02631301

Key words

Navigation