Skip to main content
Log in

Optimization of estrogen growth response in MCF-7 cells

  • Regual Papers
  • Published:
In Vitro Cellular & Developmental Biology - Animal Aims and scope Submit manuscript

Summary

The factors involved in estradiol-17β induced growth stimulation of MCF-7 human breast cancer cells have been examined. Wild type MCF-7 cells (and clone E3) were shown to undergo slow growth in phenol-red-free medium containing specific calf sera. The E3 clone was used to document a mean 6-day growth stimulation of 3.35-fold (doubling time=33±3 h) in cultures supplemented with 10−11 M estradiol-17β. The serum batch utilized in the culture medium is most important in acquiring significant growth stimulation of MCF-7 cells by estradiol-17β. Regardless of the absence of phenol-red, only selected sera (2 out of 14 tested) supported minimal growth of MCF-7 cells in the absence of added estradiol 17β (doubling time=55±11 h). When a calf-serum-supplemented culture failed to display a complete growth response to estradiol-17β, it was due to the rapid growth of the cells in the control (minus estradiol-17β) flasks. Sera that promoted shorter doubling times for MCF-7 cells cultured in the absence of estradiol-17β were rendered less supportive of growth if treated with dextran-coated charcoal or when cultures were supplemented with the estrogen antagonist ICI 164,384 (10−7 M). Pooled extracts of these sera were shown to contain stimulatory levels of estradiol-17β. Dextrancoated charcoal treatment of sera removed or deactivated factors (other than estradiol-17β) which were not only required for the growth of MCF-7 cells, but were necessary for estrogen-stimulated growth. Varying the serum-containing medium, buffer, and nutrient mix or the addition of insulin has no effect on the growth response of these cells to estradiol-17β. These investigations document the culture conditions required to produce a maximal and consistent proliferative effect of E2 on MCF-7 cells without exposing the serum constituent to damaging chemical or absorbent agents.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Aakvaag, A.; Utaaker, E.; Thorsen, T., et al. Growth control of human mammary cancer cells (MCF-7 cells) in culture: effect of estradiol and growth factors in serum-containing medium. Cancer Res. 50:7806–7810; 1990.

    PubMed  CAS  Google Scholar 

  2. Aitken, S. C.; Lippman, M. E.; Kasid, A., et al. Relationship between the expression of estrogen-regulated genes and estrogen-stimulated proliferation of MCF-7 mammary tumor cells. Cancer Res. 45:2608–2615; 1985.

    PubMed  CAS  Google Scholar 

  3. Areteaga, C. L.; Coronado, E.; Osborne, C. K. Blockage of the epidermal growth factor receptor inhibits transforming growth factor-a-induced but not estrogen-induced growth of hormone-dependent human breast cancer. Mol. Endocrinol. 2:1064–1069; 1988.

    Google Scholar 

  4. Bates, S. E.; Davidson, N. E.; Valverius, E. M., et al. Expression of TGFα and its mRNA in human breast cancer: its regualtion by estrogen and its possible functional significance. Mol. Endocrinol. 2:543–555; 1988.

    PubMed  CAS  Google Scholar 

  5. Berry, M.; Metzger, D.; Chambon, P. Role of the two activating domains of the estrogen receptor in the cell-type and promoter-context dependent agonistic activity of the anti-estrogen 4-hydroxy tamoxifen. EMBO J. 9:2811–2812; 1990.

    PubMed  CAS  Google Scholar 

  6. Bethosis, Y.; Katzenellenbogen, J. A.; Katzenellenbogen, B. S. Phenol red in tissue culture media is a weak estrogen: implications concerning the study of estrogen-responsive cells in a culture. Proc. Natl. Acad. Sci. USA 83:2496–2500; 1986.

    Article  Google Scholar 

  7. Brooks, S. C.; Horn, L.; Horwitz, J. P. The conjugation of estrogen metabolites by liver slices. Biochem. Biophys. Acta 104:250–260; 1965.

    PubMed  CAS  Google Scholar 

  8. Brooks, S. C.; Wappler, N. L.; Corombos, J. D., et al. Estrogen structure-receptor function relationships. In: Moudgil, V. K., ed. Recent advances in steroid hormone action. Berlin: Walter de Gruyter and Co.; 1987:443–466.

    Google Scholar 

  9. Brown A. M. C.; Jeltsch, J. M.; Roberts, Z. M., et al. Activation of pS2 gene transcription is a primary response to estrogen in the human breast cancer cell line MCF-7. Proc. Natl. Acad. Sci. USA 81:6344–6348; 1984.

    Article  PubMed  CAS  Google Scholar 

  10. Butler, W. B. Preparing nuclei from cells in monolayer cultures suitable for counting and for following synchronized cells through the cell cycle. Anal. Biochem. 141:70–73; 1984.

    Article  PubMed  CAS  Google Scholar 

  11. Butler, W. B.; Berlinski, P. J.; Hillman, R. M., et al. Relation ofin vivo properties to tumorigenicity for a series of sublines of the human breast cancer cell line MCF-7. Cancer Res. 46:6339–6348; 1986.

    PubMed  CAS  Google Scholar 

  12. Butler, W. B.; Kelsey, W. H.; Goran, N. Effects of serum and insulin on the sensitivity of the human breast cancer cell line MCF-7 to estrogen and antiestrogens. Cancer Res. 41:82–88; 1981.

    PubMed  CAS  Google Scholar 

  13. Butler, W. B.; Kirkland, W. L.; Gargala, T. L., et al. Steroid stimulation of plasminogen activator production in a human breast cancer cell line (MCF-7). Cancer Res. 43:1637–1641; 1983.

    PubMed  CAS  Google Scholar 

  14. Clarke, R.; Brunner, N.; Katz, D., et al. The effects of a constitutive expression of transforming growth factor-α on the growth of MCF-7 human breast cancer cellsin vitro andin vivo. Mol. Endocrinol. 3:372–380; 1989.

    PubMed  CAS  Google Scholar 

  15. Darbre, P. D.; Daly, R. J. Effects of oestrogen on human breast cancer cells in culture. Proc. R. Soc. Edinb. 95B:119–132; 1989.

    Google Scholar 

  16. Darbre, P.; Yates, J.; Curtis, S., et al. Effects of estradiol on human breast cancer cells in culture. Cancer Res. 43:349–354; 1983.

    PubMed  CAS  Google Scholar 

  17. Dell’Aquila, M. L.; Pigott, D. A.; Bonaquist, D. L., et al. A factor from plasma-derived human serum that inhibits the growth of the mammary cell line MCF-7: characterization and purification. JNCI 72:291–298; 1984.

    PubMed  CAS  Google Scholar 

  18. Dembinski, T. C.; Leung, C. K. H.; Shiu, R. P. C. Evidence for a novel pituitary factor that potentiates the mitogenic effect of estrogen in human breast cancer cells. Cancer Res. 45:3083–3089; 1985.

    PubMed  CAS  Google Scholar 

  19. Devleeschouwer, N.; Legros, N.; Olea-Serrano, N., et al. Estrogen conjugates and serum factors mediating the estrogenic trophic effect on MCF-7 cell growth. Cancer Res. 47:5883–5887; 1987.

    PubMed  CAS  Google Scholar 

  20. Edwards, D. P.; Adams, D. J.; Savage, N., et al. Estrogen induced synthesis of specific proteins in human breast cancer cells. Biochem. Biophys. Res. Comm. 93:804–812; 1980.

    Article  PubMed  CAS  Google Scholar 

  21. Hagino, Y.; Mawatari, M.; Yoshimura, A., et al. Estrogen inhibits the growth of MCF-7 cell variants resistant to transforming growth factor-beta. Jpn. J. Cancer Res. 79:74–81; 1988.

    PubMed  CAS  Google Scholar 

  22. Higuchi, K.; Robinson, R. C. Studies on the cultivation of mammalian cell lines in a serum-free chemically defined medium. In Vitro 9:114–121; 1973.

    Article  PubMed  CAS  Google Scholar 

  23. Iacobelli, S.; Scambia, G.; Natoli, V., et al. Estrogen stimulates cell proliferation and the increase of a 52 000 dalton glycoprotein in human breast cancer cells. J. Steroid Biochem. 20:747–752; 1984.

    Article  PubMed  CAS  Google Scholar 

  24. Johnson, M. D.; Westley, B. R.; May F. E. B. Estrogenic activity of tamoxifen and its metabolites on gene regulation and cell proliferation in MCF-7 breast cancer cells. Br. J. Cancer 59:727–738; 1989.

    PubMed  CAS  Google Scholar 

  25. Karey, K. P.; Sirbasku, D. A. Differential responsiveness of human breast cancer cell lines MCF-7 and T47D to growth factors and 17β-estradiol. Cancer Res. 88:4083–4092; 1988.

    Google Scholar 

  26. Kasid, A.; Davidson, N. E.; Gelman, E. D. et al. Transcriptional control of thymidine kinase gene-expression by estrogen or antiestrogens in MCF-7 human breast cancer cells. J. Biol. Chem. 261:5562–5567; 1986.

    PubMed  CAS  Google Scholar 

  27. Katzenellenbogen, B. S.; Kendra, K. L.; Norman, M. J., et al. Proliferation, hormonal responsiveness and estrogen receptor content of MCF-7 human breast cancer cells grown in the short-term and long-term absence of estrogens. Cancer Res. 47:4354–4360; 1987.

    Google Scholar 

  28. Kiss, R.; de Launoit, Y.; Danguy, A., et al. Influence of fetal calf serum in combination with pharmacological doses of progesterone or estradiol on proliferation and cell cycle kinetics of cultured mammary cancer cells. Oncology 46:391–399; 1989.

    Article  PubMed  CAS  Google Scholar 

  29. Kral, L. G.; Doherty, L. M.; Brooks, S. C. Quantitative determination of nuclear estrogen receptors by an enzyme immunoassay. Applicability and caveats. J. Steroid Biochem. 31:459–466; 1988.

    Article  PubMed  CAS  Google Scholar 

  30. Laursen, I.; Briand, P.; Lykkesfeldt, H. E. Serum albumin as a modulator on growth of the human breast cancer cell line, MCF-7. Anticancer Res. 10:343–352; 1990.

    PubMed  CAS  Google Scholar 

  31. Lippman, M.; Bolan, G.; Huff, K. The effects of estrogens and antiestrogens on hormone-responsive human breast cancer in long-term tissue culture. Cancer Res. 36:4585–4601; 1976.

    Google Scholar 

  32. Lippman, M.; Bolan, G.; Monaco, M. E., et al. Model systems for the study of estrogen action in tissue culture. J. Steroid Biochem. 7:1045–1051; 1976.

    Article  PubMed  CAS  Google Scholar 

  33. Lippman, M. E.; Bolan, G. Oestrogen-responsive human breast cancer in long term tissue culture. Nature 256:592–593; 1975.

    Article  PubMed  CAS  Google Scholar 

  34. May, F. E. G.; Westley, B. R. Cloning of estrogen-regulated messenger RNA sequences from human breast cancer cells. Cancer Res. 46:6034–6040; 1986.

    PubMed  CAS  Google Scholar 

  35. Medrano, E. E.; Resnicoff, M., Cafferate, E. G. A., et al. Increased secretory activity and estradiol receptor expression are among other relevant aspects of MCF-7 human breast tumor cell growth which are expressed only in the absence of serum. Exp. Cell Res. 188:2–9; 1990.

    Article  PubMed  CAS  Google Scholar 

  36. Page, M. J.; Field, J. K.; Everett, N. P., et al. Serum regulation of the estrogen responsiveness of the human breast cancer cell line MCF-7. Cancer Res. 43:1244–1250; 1983.

    PubMed  CAS  Google Scholar 

  37. Pourreau-Schneider, N.; Berthois, Y.; Mittre, H., et al. Estrogen response of MCF-7 cells grown on diverse substrates and in suspension culture. Promotion of morphological heterogeneity, modulation of progestin receptor induction, cell-substrate interactions on collagen gels. J. Steroid Biochem. 21:763–771; 1984.

    Article  PubMed  CAS  Google Scholar 

  38. Robinson, S. P.; Jordan, V. C. The paracrine stimulation of MCF-7 cells by MDA-MB-231 cells: possible role in antiestrogen failure. Eur. J. Clin. Oncol. 25:493–497; 1989.

    Article  CAS  Google Scholar 

  39. Savouret, J. F.; Bailly, A.; Misrahi, M., et al. Characterization of the hormone responsive element involved in the regulation of the progesterone receptor gene. EMBO J. 10:1875–1883; 1991.

    PubMed  CAS  Google Scholar 

  40. Seibert, K.; Shafie, S. M.; Triche, T. J., et al. Clonal variation of MCF-7 breast cancer cellsin vitro and in athymic nude mice. Cancer Res. 43:2223–2239; 1983.

    PubMed  CAS  Google Scholar 

  41. Soto, A. M., Sonnenschein, S. Control of cell proliferation of estrogen sensitive cells: the case for negative control. Endoc. Rev. 8:44–52; 1987.

    CAS  Google Scholar 

  42. Soule, H. D.; Vazquez, J.; Long A., et al. A human cell line from a pleural effusion derived from a breast carcinoma. J. JNCI 51:1409–1416; 1973.

    CAS  Google Scholar 

  43. Wakeling, A. E. Comparative studies on the effects of steroidal and nonsteroidal oestrogen antagonists on the proliferation of human breast cancer cells. J. Steroid Biochem. 34:183–188; 1989.

    Article  PubMed  CAS  Google Scholar 

  44. Van der Burg, B.; Rutteman, G. R.; Blankenstein, M. A., et al. Mitogenic stimulation of human breast cancer cells in a growth factor-defined medium: synergistic action of insulin and estrogen. J. Cell. Physiol. 134:101–108; 1988.

    Article  PubMed  Google Scholar 

  45. Vickers, P. J.; Dickson, R. B.; Shoemaker, R., et al. A multidrug-resistant MCF-7 human breast cancer cell line which exhibits cross-resistance to antiestrogens and hormone-independent tumor growthin vivo. Mol. Endocrinol. 2:886–892; 1988.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wiese, T.E., Kral, L.G., Dennis, K.E. et al. Optimization of estrogen growth response in MCF-7 cells. In Vitro Cell Dev Biol - Animal 28, 595–602 (1992). https://doi.org/10.1007/BF02631033

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02631033

Key words

Navigation