Skip to main content
Log in

Iron absorption by intestinal epithelial cells: 1. CaCo2 cells cultivated in serum-free medium, on polyethyleneterephthalate microporous membranes, as an in vitro model

  • Regular Papers
  • Published:
In Vitro Cellular & Developmental Biology - Animal Aims and scope Submit manuscript

Summary

Iron absorption by intestinal epithelial cells, passage onto plasmatic apotransferrin, and regulation of the process remain largely misunderstood. To investigate this problem, we have set up an in vitro model, consisting in CaCo2 cells (a human colon adenocarcinoma line, which upon cultivation displays numerous differentiation criteria of small intestine epithelial cells). Cells are cultivated in a serum-free medium, containing 1µg/ml insulin, 1 ng/ml epidermal growth factor, 10µg/ml albumin-linoleic acid, 100 nM hydrocortisone, and 2 nM T3 on new, transparent, Cyclopore polyethyleneterephthalate microporous membranes coated with type I collagen. Cells rapidly adhere, grow, and form confluent monolayers; after 15 days, scanning electron microscopy reveals numerous uniform microvilli. Domes, which develop on nonporous substrata, are absent on high porosity membranes. Culture medium from upper and lower compartments of microplate inserts and cell lysates were immunoprecipitated after labeling with [3H]glucosamine and leucine; analysis was done by sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE), followed by autoradiography. [3H]transferrin is found mainly in the lower compartment and in cells; [3H]apolipoprotein B is released in both compartments, and fibronectin almost entirely recovered in the lower compartment; [3H]transferrin receptors and ferritin are only present in cell lysates. Binding experiments also show that transferrin receptors are accessible from the lower compartment. These results suggest that CaCo2 cells, cultivated in synthetic medium on membranes of appropriate porosity, could provide an in vitro model of the intestinal barrier, with the upper compartment of the culture insert corresponding to the apical pole facing the intestinal lumen and the lower one to the basal pole in contact with blood.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Aboud-Pirak, E.; Sergent, T.; Otte-Slachmuylder, C., et al. Binding and endocytosis of a monoclonal antibody to a high molecular weight human milk fat globule membrane-associated antigen by cultured MCF-7 breast carcinoma cells. Cancer Res. 48:3188–3196; 1988.

    PubMed  CAS  Google Scholar 

  2. Bothwell, T. H.; Charlton, R. W.; Cook, J. D., et al. Iron metabolism in man. Oxford: Blackwell; 1979.

    Google Scholar 

  3. Burnham, D. B.; Fondacaro, J. D. Secretagogue-induced protein phosphorylation and chloride transport in CaCo-2 cells. Am. J. Physiol. 256:G808-G816; 1989.

    PubMed  CAS  Google Scholar 

  4. Chantret, I.; Barbat, A.; Dussaulx, E., et al. Epithelial polarity, villin expression, and enterocytic differentiation of cultured human colon carcinoma cells: a survey of twenty cell lines. Cancer Res. 48:1936–1942;1988.

    PubMed  CAS  Google Scholar 

  5. Crichton, R. R.; Charloteaux-Wauters, M. Iron transport and storage. Eur. J. Biochem. 164:485–506; 1987.

    Article  PubMed  CAS  Google Scholar 

  6. Eilers, U.; Klumperman, J.; Hauri, H.-P. Nocodazole, a microtubuleactive drug, interferes with apical protein delivery in cultured intestinal epithelial cells (CaCo-2). J. Cell Biol. 108:13–22; 1989.

    Article  PubMed  CAS  Google Scholar 

  7. Faust, R. A.; Albers, J. J. Regulated vectorial secretion of cholesteryl ester transfer protein (LTP-I) by the CaCo-2 model of human enterocyte epithelium. J. Biol. Chem. 263:8786–8789; 1988.

    PubMed  CAS  Google Scholar 

  8. Godefroy, O.; Huet, C.; Blair, L. A. C., et al. Differentiation of a clone from the HT29 cell line: polarized distribution of histocompatibility antigens (HLA) and of transferrin receptors. Biol. Cell. 63:41–55; 1988.

    Article  PubMed  CAS  Google Scholar 

  9. Halleux, C.; Schneider, Y.-J. Iron absorption by human CaCo2 cells, used as a model of the intestinal barrier. Arch. Int. Physiol. Biochim. 98:B75; 1990.

    Google Scholar 

  10. Hidalgo, I. J.; Raub, T. J.; Borchardt, R. T. Characterization of the human colon carcinoma cell line (CaCo-2) as a model system for intestinal epithelial permeability. Gastroenterology 96:736–749; 1989.

    PubMed  CAS  Google Scholar 

  11. Hidalgo, I. J.; Kato, A.; Borchardt, R. T. Binding of epidermal growth factor by human colon carcinoma cell (CaCo-2) monolayers. Biochem. Biophys. Res. Comm. 160:317–324; 1989.

    Article  PubMed  CAS  Google Scholar 

  12. Hughes, T. E.; Vodek Sasak, W.; Ordovas, J. M., et al. A novel cell line (CaCo-2) for the study of intestinal lipoprotein synthesis. J. Biol. Chem. 262:3762–3767; 1987.

    PubMed  CAS  Google Scholar 

  13. Hughes, T. E.; Ordovas, J. M.; Schaefer, E. J. Regulation of intestinal apolipoprotein B synthesis and secretion by CaCo-2 cells. J. Biol. Chem. 263:3425–3431; 1988.

    PubMed  CAS  Google Scholar 

  14. Hughson, E. J.; Culter, D. F.; Hopkins, C. R. Basolateral secretion of kappa light chain in the polarize epithelial cell line, CaCo-2. J. Cell Sci. 94:327–332; 1989.

    PubMed  Google Scholar 

  15. Jin, Y.; Crichton, R. R. Iron transfer from ferritin to transferrin. FEBS. Lett. 215:41–46; 1987.

    Article  PubMed  CAS  Google Scholar 

  16. Jin, Y.; Bacquet, A.; Florence, A., et al. Desferrithiocin and desferrioxamine B: cellular pharmacology and storage iron mobilisation. Biochem. Pharmacol. 38:3233–3240; 1989.

    Article  PubMed  CAS  Google Scholar 

  17. Kam, N. T. P.; Albright, E.; Mathur, S. N., et al. Inhibition of acylcoenzyme A: cholesterol acyltransferase activity in CaCo-2 cells results in intracellular triglyceride accumulation. J. Lipid Res. 30:371–377; 1989.

    PubMed  CAS  Google Scholar 

  18. Kleinman, H. K.; McGarvey, M. L.; Liotta, L. A., et al. Isolation and characterization of type IV procollagen, laminin and heparan sulfate proteoglycan from the EHS sarcoma. Biochemistry 21:6188–6193; 1982.

    Article  PubMed  CAS  Google Scholar 

  19. Laburthe, M.; Rousset, M.; Rouyer-Fessard, C., et al. Development of vasoactive intestinal peptide-responsive adenylate cyclase during enterocytic differentiation of CaCo-2 cells in culture. J. Biol. Chem. 262:10180–10184; 1987.

    PubMed  CAS  Google Scholar 

  20. Le Bivic, A.; Bosc-Biern, I.; Reggio, H. Characterization of a glycoprotein expressed on the basolateral membrane of human intestinal epithelial cells and cultured colonic cell lines. Eur. J. Cell Biol. 46:113–120; 1988.

    PubMed  Google Scholar 

  21. Lee, D. M.; Dashti, N.; Mok, T. Apolipoprotein B-100 is the major form of this apolipoprotein secreted by human intestinal CaCo-2 cells. Biochem. Biophys. Res. Commun. 156:581–587; 1988.

    Article  PubMed  CAS  Google Scholar 

  22. Legras R.; Jogen, Y. Procédé de réalisation de performation dans un matériau solide en feuille; dispositif d’irradiation pour la mise en oeuvre du procédé et matériau ainsi obtenu. Eur. Patent noW 087/05850.

  23. Lowry, O. H. Rosebrough, N. J.; Farr, A. L., et al. Protein measurement with the folin phenol reagent. J. Biol. Chem. 193:265–275; 1951.

    PubMed  CAS  Google Scholar 

  24. McKeehan, W. L.; Hamilton, W. G.; Ham, R. G. Selenium is an essential trace nutrient for growth of WI-38 diploid human fibroblasts. Proc. Natl. Acad. Sci. USA 73:2023–2026; 1976.

    Article  PubMed  CAS  Google Scholar 

  25. Octave, J.-N.; Schneider, Y.-J.; Crichton, R. R., et al. Transferrin uptake by rat embryo fibroblasts. Eur. J. Biochem. 115:611–618; 1981.

    Article  PubMed  CAS  Google Scholar 

  26. Pinto, M.; Robine-Leon, S.; Appay, M. D., et al. Enterocyte-like differentiation and polarization of the human colon carcinoma cell line CaCo-2 in culture. Biol. Cell 47:323–330; 1983.

    Google Scholar 

  27. Rama, R.; Octave, J. N.; Schneider, Y.-J. Iron mobilization from cultured rat macrophages loaded with59Fe labeled erythroblasts. Protides Biol. Fluids Proc. 31:207–210; 1984.

    Google Scholar 

  28. Ramond, M. J.; Martinot-Peignoux, M.; Erlinger, S. Dome formation in the human colon carcinoma cell line CaCo-2 in culture. Influence of ouabain and permeable supports. Biol. Cell 54:85–92; 1985.

    Google Scholar 

  29. Rindler, N. J.; Traber, M. G. A specific sorting signal is not required for the polarized secretion of newly synthesized proteins from cultured intestinal epithelial cells. J. Cell Biol. 107:471–479; 1988.

    Article  PubMed  CAS  Google Scholar 

  30. Rindler, M. J.; Traber, M. G. Polarized secretion of newly synthesized proteins by cultured intestinal epithelial cells: a basolaterally-directed default pathway. J. Cell Biol. 105:4, 58a; 1987.

    Google Scholar 

  31. Roiron, D.; Amouric, M.; Marvaldi, J., et al. Lactoferrin-binding sites at the surface of HT29-D cells; comparison with transferrin. Eur. J. Biochem. 186:367–373; 1989.

    Article  PubMed  CAS  Google Scholar 

  32. Sergent-Engelen, T.; Halleux, C.; Ferain, E., et al. Improved cultivation of polarized animal cells on culture inserts with new transparent polyethylene terephthalate or polycarbonate microporous membranes. Biotechnol. Techniques. 4:89–96; 1990.

    Article  CAS  Google Scholar 

  33. Schneider, Y.-J. Optimisation of hybridoma cell growth and monoclonal antibody secretion in a chemically defined, serum- and proteinfree culture medium. J. Immunol. Methods 116:65–77; 1989.

    Article  PubMed  CAS  Google Scholar 

  34. Schneider, Y.-J.; Lavoix, A. Monoclonal antibody production in semicontration and serum- and protein-free culture: effect of glutamine concentration and culture conditions on cell growth and antibody secretion. J. Immunol. Methods. 129:251–268; 1990.

    Article  PubMed  CAS  Google Scholar 

  35. Sibille, J.-C.; Kondo, H.; Aisen, P. Interactions between isolated hepatocytes and Kupffer cells in iron metabolism: a possible role for ferritin as an iron carrier protein. Hepatology 8:296–301; 1988.

    Article  PubMed  CAS  Google Scholar 

  36. Sibille, J.-C.; Ciriolo, M.; Kondo, H., et al. Subcellular localization of ferritin and iron taken up by rat hepatocytes. Biochem. J. 262:685–688; 1989.

    PubMed  CAS  Google Scholar 

  37. Traber, M. G.; Kayden, H. J.; Rindler, M. J. Polarized secretion of newly synthesized lipoproteins by the CaCo-2 human intestinal cell line. J. Lipid Res. 28:1350–1363; 1987.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

This work was supported by the Belgian Fonds de la Recherche Scientifique Médicale (grant 3.4551.88) and the Walloon Region.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Halleux, C., Schneider, YJ. Iron absorption by intestinal epithelial cells: 1. CaCo2 cells cultivated in serum-free medium, on polyethyleneterephthalate microporous membranes, as an in vitro model. In Vitro Cell Dev Biol - Animal 27, 293–302 (1991). https://doi.org/10.1007/BF02630906

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02630906

Key words

Navigation