Skip to main content
Log in

Comparative endocrinology-paracrinology-autocrinology of human adult large vessel endothelial and smooth muscle cells

  • Regular Papers
  • Published:
In Vitro Cellular & Developmental Biology Aims and scope Submit manuscript

Summary

Endothelial and smooth muscle cells were isolated from human adult large blood vessels to compare their proliferative response to hormones and growth factors. Neural extracts and the medium from differentiated hepatoma cells were used as concentrated sources of required hormones and growth factors that supported both cell types. Active hormones and growth factors were identified from the neural extracts and hepatoma medium by substitution or direct isolation and biochemical characterization. Epidermal growth factor, lipoproteins, and heparin-binding growth factors elicited growth-stimulatory effects on both endothelial and smooth muscle cells. Both types of human vascular cells displayed 7600 to 8600 specific heparin-binding growth factor receptors per cell with a similar apparent dissociation constant (Kd) of 200 to 250 pM. Heparin modified the response of both endothelial and smooth muscle cells to heparin-binding growth factors dependent on the type of heparin-binding growth factor and amount of heparinlike material present. In addition, heparin exerted a growth factor-independent inhibition of smooth muscle cell proliferation. Platelet-derived growth factor, insulinlike growth factors, and glucocorticoid specifically supported proliferation of smooth muscle cells with no apparent effect on endothelial cell proliferation. Growth-factorlike proteinase inhibitors had an impact specifically on endothelial cell proliferation. Transforming growth factor beta was a specific inhibitor of endothelial cells, but had a positive effect on smooth muscle cell proliferation. The results provide a framework for differential control of the two vascular cell types at normal and atherosclerotic blood vessel sites by the balance among positive and negative effectors of endocrine, paracrine and autocrine origin.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Abraham, J. A.; Mergia, A.; Whang, J. L., et al. Nucleotide sequence of a bovine clone encoding the angiogenic protein, basic fibroblast growth factor. Science 233: 545–548; 1986.

    Article  PubMed  CAS  Google Scholar 

  2. Aden, D. P.; Fogel, A.; Plotkin, S. et al. Controlled synthesis of HBsAg in a differentiated human liver carcinoma-derived cell line. Nature 282: 615–616; 1979.

    Article  PubMed  CAS  Google Scholar 

  3. Assoian, R. K.; Grotendorst, G. R.; Miller, D. M., et al. Cellular transformation by coordinated action of three peptide growth factors from human platelets. Nature 309: 804–806; 1984.

    Article  PubMed  CAS  Google Scholar 

  4. Assoian, R. K.; Sporn, M. B. Type β transforming growth factor in human platelets. Release during platelet degranulation and action n vascular smooth muscle cells. J. Cell. Biol. 102: 1217–1223; 1986.

    Article  PubMed  CAS  Google Scholar 

  5. Baird, A.; Durkin, T. Inhibition of endothelial cell proliferation by type β-transforming growth factor. Interactions with acidic and basic fibroblast growth factors. Biochem. Biophys. Res. Commun. 138: 476–482; 1986.

    Article  PubMed  CAS  Google Scholar 

  6. Baird, A.; Ling, N. Fibroblast growth factors are present in the extracellular matrix produced by endothelial cellsin vitro: Implication for a role of heparinase-like enzymes in the neovascular response. Biochem. Biophys. Res. Commun. 142: 428–435; 1987.

    Article  PubMed  CAS  Google Scholar 

  7. Baird, A.; Mormede, P.; Bohlen, P. Immunoreactive fibroblast growth factor in cells of peritoneal exudate suggests its identity with macrophage-derived growth factor. Biochem. Biophys. Res. Commun. 126: 358–364; 1985.

    Article  PubMed  CAS  Google Scholar 

  8. Barett, T. B.; Gajdusek, G. M.; Schwarz, S. M., et al. Expression of the sis gene by endothelial cells in culture andin vivo. Proc. Natl. Acad. Sci. USA 81: 6772–6774; 1984.

    Article  Google Scholar 

  9. Barnes, D. W.; Sato, G. H. Serum-free cell culture: a unifying approach. Cell 22: 649–655; 1980.

    Article  PubMed  CAS  Google Scholar 

  10. Bowen-Pope, D. F.; Vogel, A.; Ross, R. Production of platelet-derived growth factor-like molecules and reduced expression of platelet-derived growth factor receptors accompany transformation by a wide spectrum of agents. Proc. Natl. Acad. Sci. USA 81: 2396–2400; 1984.

    Article  PubMed  CAS  Google Scholar 

  11. Burgess, W. H.; Mehlman, T., Friesel, R., et al. Multiple forms of endothelial cell growth factor. J. Biol. Chem. 26: 11389–11392; 1985.

    Google Scholar 

  12. Castellot, J. J.; Addonizio, M. J.; Rosenberg, R. D., et al. Cultured endothelial cells produce a heparin-like inhibitor of smooth muscle cell growth. J. Cell Biol. 90: 372–379; 1981.

    Article  PubMed  CAS  Google Scholar 

  13. Castellot, J. J.; Rosenberg, R. D.; Karnovsky, M. J. Endothelium, heparin and the regulation of vascular smooth muscle cell growth. In: Jaffe, E. A., ed. Biology of endothelial cells. Boston: Martinus Nijhoff Publishers; 1984: 118–128.

    Google Scholar 

  14. Chen, J.-K.; Hoshi, H.; McClure, D. B., et al. Role of lipoproteins in growth of human adult arterial endothelial and smooth muscle cells in low lipoprotein-deficient serum. J. Cell. Physiol. 129: 207–214; 1986.

    Article  PubMed  CAS  Google Scholar 

  15. Chen, J.-K.; Hoshi, H.; McKeehan, W. L. Heparin-binding growth factor type one and platelet-derived growth factor enhance optimal expression of low density lipoprotein receptor activity in human adult arterial smooth muscle cells. In Vitro. 24: 195–198; 1988.

    Google Scholar 

  16. Chen, J.-K.; Hoshi, H.; McKeehan, W. L. Transforming growth factor beta specifically stimulates synthesis of proteoglycan in human adult arterial smooth muscle cells. Proc. Natl. Acad. Sci. USA 84: 5287–5291; 1987.

    Article  PubMed  CAS  Google Scholar 

  17. Crabb, J. W.; Armes, L. G.; Carr, S. A., et al. Complete primary structure of prostatropin, a prostate epithelial cell growth factor. Biochemistry 25: 4988–4993; 1986.

    Article  PubMed  CAS  Google Scholar 

  18. Crabb. J. W.; Armes, L. G.; Johnson, C. M., et al. Characterization of multiple forms of prostatropin (prostate epithelial cell growth factor) from bovine brain. Biochem. Biophys. Res. Commun. 136: 1155–1161; 1986.

    Article  PubMed  CAS  Google Scholar 

  19. Esch, F.; Baird, A.; Ling, N., et al. Primary structure of bovine pituitary basic fibroblast growth factor (FGF) and comparison with the amino-terminal sequence of bovine brain acidic FGF. Proc. Natl. Acad. Sci. USA 82: 6507–6511; 1985.

    Article  PubMed  CAS  Google Scholar 

  20. Esch, F.; Ueno, N.; Baird, A. et al. primary structure of bovine acidic fibroblast growth factor (FGF). Biochem. Biophys. Res. Commun. 133: 554–562; 1985.

    Article  PubMed  CAS  Google Scholar 

  21. Folkman, J. Angiogenesis. Jaffe, E. A., eds. Biology of endothelial cells. Boston: Martinus Nijhoff Publishers; 1984: 412–428.

    Google Scholar 

  22. Frank, E. D.; Warren, L. Aortic smooth muscle cells contain vimentin instead of desmin. Proc. Natl. Acad. Sci. USA 78: 3020–3024; 1981.

    Article  PubMed  CAS  Google Scholar 

  23. Frater-Schroder, M.; Muller, G.; Birchmeier, W., et al. Transforming growth factor-beta inhibits endothelial cell proliferation. Biochem. Biophys. Res. Commun. 137: 295–302; 1986.

    Article  PubMed  CAS  Google Scholar 

  24. Fujimoto, T.; Singer, S. J. Immunochemical studies of endothelial cells in vivo. I. The presence of desmin only, or of desmin plus vimentin, or vimentin only, in the endothelial cells of different capillaries of the adult chicken. J. Cell Biol. 103: 2775–2786; 1986.

    Article  PubMed  CAS  Google Scholar 

  25. Gabbiani, F.; Schmid, E.; Winter, S., et al. Vascular smooth muscle cells differ from other smooth muscle cells: predominance of vimentin filaments and a specific α-actin. Proc. Natl. Acad. Sci. USA 78: 298–302; 1981.

    Article  PubMed  CAS  Google Scholar 

  26. Goustin, A. S.; Leof, E. B.; Shipley, G. D., et al. Growth factors and cancer. Cancer Res. 46: 1015–1029; 1986.

    PubMed  CAS  Google Scholar 

  27. Guyton, J. R.; Rosenberg, R. D.; Cloves, A. W., et al. Inhibition of rat arterial smooth muscle cell proliferation by heparin. I. In vivo studies with anticoagulant and non-anticoagulant heparin. Circ. Res. 46: 625–634; 1980.

    PubMed  CAS  Google Scholar 

  28. Ham, R. G.; McKeehan, W. L. Media and growth requirements. Methods Enzymol. 59: 44–93; 1979.

    Article  Google Scholar 

  29. Heimark, R. L.; Twardzik, D. R.; Schwartz, S. M. Inhibition of endothelial regeneration by type-beta transforming growth factor from platelets. Science 233: 1078–1080; 1986.

    Article  PubMed  CAS  Google Scholar 

  30. Hoshi, H.; McKeehan, W. L. Brain- and liver cell-derived factors are required for growth of human endothelial cells in serum-free culture. Proc. Natl. Acad. Sci. USA 81: 6413–6417; 1984.

    Article  PubMed  CAS  Google Scholar 

  31. Hoshi, H.; McKeehan, W. L. Isolation, growth requirements, cloning, prostacyclin production and life-span of human adult endothelial cells in low serum culture medium. In Vitro 22: 51–56; 1986.

    CAS  Google Scholar 

  32. Jaye, M.; Howk, R.; Burgess, W., et al. Human endothelial cell growth factor: Cloning nucleotide sequence, and chromosome localization. Science 233: 541–545; 1986.

    Article  PubMed  CAS  Google Scholar 

  33. Jaye, M.; McConathy, E.; Drohan, W., et al. Regression of sis gene expression during endothelial cell differentiation in vitro. Science 228: 883–885; 1985.

    Article  Google Scholar 

  34. Kan, M.; Hou, J.; Hoshi, H., et al. High- and low- affinity binding of heparin-binding growth factor to a single 130 kD membrane receptor correlates with stimulation and inhibition of growth of a differentiated human hepatoma cell. J. Biol. Chem. (in press); 1988.

  35. Knowles, B. B.; Howe, C. C.; Aden, D. P. Human hepatocellular carcinoma cell lines secrete the major plasma proteins and hepatitis B surface antigen. Science 209: 497–499; 1980.

    Article  PubMed  CAS  Google Scholar 

  36. Lobb, R. R.; Harper, J. W.; Fett, J. W. Purification of heparinbinding growth factors. Anal. Biochem. 154: 1–14; 1986.

    Article  PubMed  CAS  Google Scholar 

  37. Maciag, T.; Mehlman, T.; Friesel, R., et al. Heparin binds endothelial cell growth factor, the principal endothelial cell mitogen in bovine brain. Science 225: 932–935; 1984.

    Article  PubMed  CAS  Google Scholar 

  38. Majesky, M. W.; Reidy, M. A.; Benditt, E. P., et al. Focal smooth muscle proliferation in the aortic intima produced by an initiation-promotion sequence. Proc. Natl. Acad. Sci. USA 82: 3450–3454; 1985.

    Article  PubMed  CAS  Google Scholar 

  39. McKeehan, W. L. Growth factors spawn new cell cultures. Nature 321: 629–630; 1986.

    Article  CAS  Google Scholar 

  40. McKeehan, W. L.; Crabb, J. W. Isolation and characterization of different molecular and chromatographic forms of heparin-binding growth factor-1 from bovine brain. Anal. Biochem. 164: 563–569; 1987.

    Article  PubMed  CAS  Google Scholar 

  41. McKeehan, W. L.; Sakagami, Y.; Hoshi, H., et al. Two apparent human endothelial cell growth factors from human hepatoma cells are tumor-associated proteinase inhibitors. J. Biol. Chem. 261: 5378–5387; 1986.

    PubMed  CAS  Google Scholar 

  42. Nilsson, J. Growth factors and the pathogenesis of atherosclerosis. Atherosclerosis 62: 185–199; 1986.

    Article  PubMed  CAS  Google Scholar 

  43. Oka, Y.; Orth, D. N. Human plasma epidermal growth factor/β urogastrone is associated with blood platelets. J. Clin. Invest. 72: 249–259; 1983.

    PubMed  CAS  Google Scholar 

  44. Roberts, A. B.; Sporn, M. B.; Assoian R. K., et al. Transforming growth factor type β: Rapid induction of fibrosis and angiogenesis in vivo and stimulation of collagen formation in vitro. Proc. Natl. Acad. Sci. USA 83: 4167–4171; 1986.

    Article  PubMed  CAS  Google Scholar 

  45. Ross, R.; Faggioto, A.; Bowen-Pope, D., et al. The role of endothelial injury and platelet and macrophage interactions in atherosclerosis. Circulation. 70: (suppl. III) III 77-III 82; 1984.

    CAS  Google Scholar 

  46. Ross, R.; Glomset, J. A. The pathogenesis of atherosclerosis. N. Engl. J. Med. 295: 369–377, 420–425; 1976.

    Article  PubMed  CAS  Google Scholar 

  47. Schreiber, A. B.; Kenney, J.; Kowalski, W. J., et al. Interaction of endothelial cell growth factor with heparin. Characterization by receptor and antibody recognition. Proc. Natl. Acad. Sci. USA 82: 6138–6142; 1985.

    Article  PubMed  CAS  Google Scholar 

  48. Schwander, J.; Zapf, J.; Hauri, C., et al. Synthesis and secretion of insulin-like growth factor and its binding protein by the perfused rat liver: dependence on growth hormone status. Endocrinology 113: 297–305; 1983.

    Article  PubMed  CAS  Google Scholar 

  49. Schweigerer, L.; Neufeld, G.; Friedman, J., et al. Capillary endothelial cells express basic fibroblast growth factor, a mitogen that promotes their own growth. Nature 325: 257–259; 1987.

    Article  PubMed  CAS  Google Scholar 

  50. Shimokado, K.; Raines, E. W.; Madtes, D. K., et al. A significant part of macrophage-derived growth factor consists of at least two forms of PDGF. Cell 43: 277–286; 1985.

    Article  PubMed  CAS  Google Scholar 

  51. Strydom, D. J.; Harper, J. W.; Lobb, R. R. Amino acid sequence of bovine brain derived class 1 heparin-binding growth factor. Biochemistry 25: 941–951; 1986.

    Article  Google Scholar 

  52. Thornton, S. C.; Mueller, S. N.; Levine, E. M. Human endothelial cells. Use of heparin in cloning and long-term serial cultivation. Science 222: 623–625; 1983.

    Article  PubMed  CAS  Google Scholar 

  53. Vlodavsky, I.; Folkman, J.; Sullivan, R., et al. Endothelial cell-derived basic fibroblast growth factor: Synthesis and deposition into subendothelial extracellular matrix. Proc. Natl. Acad. Sci. USA 84: 2292–2296; 1987.

    Article  PubMed  CAS  Google Scholar 

  54. Walker, L. N.; Bowen-Pope, D. F.; Ross, R., et al. Production of platelet-derived growth factor-like molecules by cultured arterial smooth muscle cells accompanies proliferation after arterial injury. Proc. Natl. Acad. Sci. USA 83: 7311–7315; 1986.

    Article  PubMed  CAS  Google Scholar 

  55. Weinstein, R.; Stemerman, M. B.; Maciag, T. Hormonal requirements for growth of arterial smooth muscle cells in vitro: an endocrine approach to atherosclerosis. Science 212: 818–820; 1981.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

This research was supported by NIH grants CA37589, HL33847, and AM35310 from the National Institutes of Health, Bethesda, MD; grant 1718 from the Council for Tobacco Research; and a grant from RJR/Nabisco, Inc.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hoshi, H., Kan, M., Chen, JK. et al. Comparative endocrinology-paracrinology-autocrinology of human adult large vessel endothelial and smooth muscle cells. In Vitro Cell Dev Biol 24, 309–320 (1988). https://doi.org/10.1007/BF02628833

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02628833

Key words

Navigation