Skip to main content
Log in

Effect of cell-substratum interaction on hemicyst formation by MDCK cells

  • Published:
In Vitro Aims and scope Submit manuscript

Summary

On impermeable substrate MDCK cells, a cell line derived from normal dog kidney, forms a confluent monolayer that is studded with numerous hemicysts. Previous studies with this cell line suggest that these hemicysts develop as a result of active fluid accumulation between cell sheet and substratum. However, the formation of hemicysts as a multifocal phenomenon is still unexplained. The results presented here show that the hemicysts are not only expressions of active transport of solutes and water, but also of cell-substratum interaction. The increase in number and size of the hemicyst produced by dbcAMP may be explained by a decrease in the adhesive strength to substrata produced by this compound. Moreover, when the strength of the cell-substratum adhesion was increased the number of hemicysts was reduced or abolished. On the contrary, when this strength was reduced, larger hemicysts occurred, covering practically all the area available for growth. Results from cinematographic time lapse studies, showing that 90% of the area of the monolayer is able to produce hemicysts, also suggest that hemicyst formation as a multifocal phenomenon is more an expression of local variations in cell-substratum interaction than of regional changes in transepithelial active transport.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Madin, S.; Darby, N. B. American Type Culture Collection. Catalog of strains. 2: 47.

  2. Leighton, H.; Brada, Z.; Estes, L. W.; Justh, G. Secretory activity and oncogenicity of a cell line (MDCK) derived from canine kidney. Science 163: 472–473; 1969.

    Article  PubMed  CAS  Google Scholar 

  3. Auersperg, N. Histogenic behavior of tumors. I. Morphologic variation in vitro and in vivo of two related human carcinoma cell lines. J. Natl. Cancer Inst. 43: 151–153; 1969.

    PubMed  CAS  Google Scholar 

  4. Enami, J.; Nandi, S.; Haslam, S. Production of three-dimensional structures—“domes”—from dissociated mammary epithelial cells of mice (abstr.). In Vitro 8: 405; 1973.

    Google Scholar 

  5. Lissitzky, S.; Fayet, G.; Giraud, A. Thyrotropin-induced aggregation and reorganization into follicles of isolated porcine thyroid cells. I. Mechanism of action thyrotropin and metabolic properties. Eur. J. Biochem. 24: 88–89; 1971.

    Article  PubMed  CAS  Google Scholar 

  6. McGrath, C. M. Replication of mammary tumor virus in tumor cell cultures: Dependence on hormone-induced cellular organization. J. Natl. Cancer Inst. 47: 455–467; 1971.

    PubMed  CAS  Google Scholar 

  7. Owens, R. B.; Smith, H. S.; Hackett, A. J. Epithelial cell cultures from normal glandular tissue of mice. J. Natl. Cancer Inst. 53: 261–269; 1974.

    PubMed  CAS  Google Scholar 

  8. Sherman, M. I. The culture of cells derived from mouse blastocysts. Cell 5: 343–349; 1975.

    Article  PubMed  CAS  Google Scholar 

  9. Smith, R. E.; Ellis, L. E.; Hull, R. N., Light, scanning, and transmission electron microscopy of “dome-like” structure in a continuous pig kidney cell strain. J. Cell Biol. 63: 322a; 1974.

    Article  Google Scholar 

  10. Soule, H. D.; Vasquez, J.; Long, A.; Albert, S.; Brennan, M. A human cell line from a pleural effusion derived from a breast carcinoma. J. Natl. Cancer Inst. 51: 1409–1416; 1973.

    PubMed  CAS  Google Scholar 

  11. Leighton, J.; Estes, L. W.; Mansukhani, S.; Brada, A. A cell line derived from normal dog kidney (MDCK) exhibiting qualities of papillary adenocarcinoma and renal tubular epithelium. Cancer 26: 1022–1028; 1970.

    Article  PubMed  CAS  Google Scholar 

  12. Cereijido, M.; Robbins, E. S.; Dolan, W. J.; Rotunno, C. A.; Sabatini, D. D. Polarized monolayers formed by epithelial cells on a permeable and translucent support. J. Cell Biol. 77: 853–880; 1978.

    Article  PubMed  CAS  Google Scholar 

  13. Misfeldt, D. S.; Hamamoto, S. T.; Pitelka, D. R. Transepithelial transport in cell culture. Proc. Natl. Acad. Sci. U.S.A. 73: 1212–1216; 1976.

    Article  PubMed  CAS  Google Scholar 

  14. Rabito, C. A.; Tchao, R.; Valentich, J.; Leighton, J. A tissue culture model to study transport functions in epithelial membranes (abstr.). J. Gen. Physiol. 70: 15a; 1977.

    Google Scholar 

  15. Rabito, C. A.; Tchao, T.; Valentich, J.; Leighton, J. Distribution and characteristics of the occluding junctions in a monolayer of a cell line (MDCK) derived from canine kidney. J. Membr. Biol. 43: 351–365; 1978.

    Article  PubMed  CAS  Google Scholar 

  16. Cala, P. M.; Cogswell, N.; Mandel, L. J. Binding of [3H]ouabain to split frog skin. The role of the Na, K-ATPase in the generation of short circuit current. J. Gen. Physiol. 71: 347–367; 1978.

    Article  PubMed  CAS  Google Scholar 

  17. Agus, Z. S.; Gardner, L. B.; Beck, L. H.; Goldberg, M. Effects of parathyroid hormone on renal tubular reabsorption of calcium, sodium, and phosphate. Am. J. Physiol. 224; 1143–1148; 1973.

    PubMed  CAS  Google Scholar 

  18. Gekle, D. Der Einflu von Parathormon auf die Nierenfuktion. I. Tierexperimentalle Untersuchungen. Pfluegers Arch. 323: 96–120; 1971.

    Article  CAS  Google Scholar 

  19. Kuntziger, H.; Amiel, C.; Roinel, N.; Morel, F. Effects of parathyroidectomy and cyclic AMP on renal transport of phosphate, calcium, and magnesium. Am. J. Physiol. 227: 905–911; 1974.

    PubMed  CAS  Google Scholar 

  20. Schultz, S. G.; Frizzell, R. A.; Nellans, H. N. Ion transport by mammalian small intestine. Annu. Rev. Physiol. 36: 51–91; 1974.

    Article  CAS  Google Scholar 

  21. Kleve, R. J.; Rosenberger, P. G.; Naylor, S. L.; Burns, R. L.; Novak, R.. Cell attachment to collagen. Isolation of a cell attachment mutant. Exp. Cell Res. 104: 119–125; 1977.

    Article  Google Scholar 

  22. Gottlieb, D. I.; Glaser, L. A novel assay of neuronal cell adhesion. Biochem. Biophys. Res. Commun. 63: 815–821; 1975.

    Article  PubMed  CAS  Google Scholar 

  23. Walther, B. T.; Ohman, P.; Roseman, S. A quantitative assay for intracellular adhesion. Proc. Natl. Acad. Sci. U.S.A. 70: 1569–1573; 1973.

    Article  PubMed  CAS  Google Scholar 

  24. Elsdale, T.; Bard, J. Collagen substrata for studies on cell behavior. J. Cell. Biol. 54: 626–637; 1972.

    Article  PubMed  CAS  Google Scholar 

  25. Grinnell, F.; Milam, M.; Srere, P. A. Cyclic AMP does not affect the rate at which cells attach to a substratum. Nature New Biol. 241: 82–83; 1972.

    Google Scholar 

  26. Tchao, R.; Valentich, J. D.; Leighton, J. Cyclic AMP does not affect the detachability of MDCK, an epithelial cell line (abstr.). J. Cell. Biol. 70: 76a; 1976.

    Google Scholar 

  27. Misfeldt, D. S. Transepithelial transport in cell culture. Berkeley, CA: Univ. of California; 1975. 71 p. Dissertation.

    Google Scholar 

  28. McGrath, C. Analysis of mammary tumor virus (MTV) replication in tumor. Berkeley, CA: Univ. of California; 1970 218 p. Dissertation.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rabito, C.A., Tchao, R., Valentich, J. et al. Effect of cell-substratum interaction on hemicyst formation by MDCK cells. In Vitro 16, 461–468 (1980). https://doi.org/10.1007/BF02626458

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02626458

Key words

Navigation