Skip to main content
Log in

Rat pituitary tumor cells in serum-free culture. I. Selection of thyroid hormone-responsive and autonomous cells

  • Regular Papers
  • Published:
In Vitro Cellular & Developmental Biology Aims and scope Submit manuscript

Summary

The growth of GH4C1, GH3, GH1, and GH3C15 rat pituitary tumor cell lines was studied in a serum-free medium (designated TRM-1) formulated with 1∶1 (vol/vol) mixture of Ham's F12 nutrient mixture and Dulbecco's modified Eagle's medium (F12-DME) containing 15 mM 4-(2-hydroxyethyl)-1-piperazineethanesulfonic acid (HEPES), 50 μg/ml gentamicin supplemented with 10 μg/ml bovine insulin, 10 μg/ml human transferrin (Tf), 10 ng/ml selenous acid, 10 nM 3,5,3′-triiodothyronine (T3), 50 μM ethanolamine (Etn), and 500 μg/ml bovine serum albumin. Of the lines evaluated, only the GH1 failed to grow in TRM-1. Passage of the GH4C1 and GH3 lines from serum-containing medium into TRM-1 caused an initial selection resulting in cells that grew progressively at higher rates and finally were maintained indefinitely in TRM-1. These populations showed a requirement for supraphysiologic concentrations of T3 (1.0 to 10 nM). After adaptation of the GH4C1 line in TRM-1 for ≤20 generations, removal of components gave a less complex mixture containing 15 mM HEPES, 50 μ/ml gentamicin, 10 μg/ml Tf, 10 nM T3, and 50 μM Etn (designated TRM-2) that supported serial passage of the cells. Under these conditions, thyroid hormone dependence was lost progressively. When T3 was removed from TRM-2 adapted cells, a third population was selected that no longer required thyroid hormones and was only slightly stimulated by T3. These studies demonstrated that the combination of serum-containing and serum-free conditions can be used to select pituitary cell populations that a) required both serum-factor(s) and T3 for optimum growth, b) required supraphysiologic concentrations of T3 without serum proteins other than Tf and albumin, and c) were completely autonomous in that they proliferated in medium supplemented only with Tf and nutrients without necessity of other serum factor(s) or T3.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Gardner, W. U.; Kirschbaum, A.; Strong, L. C. Lymphoid tumors in mice receiving estrogens. Arch. Pathol. 29:1–7; 1940.

    CAS  Google Scholar 

  2. Allen, E.; Gardner, W. U. Cancer of the cervix of the uterus in hybrid mice following long-continued administration of estrogen. Cancer Res. 1:359–366; 1941.

    CAS  Google Scholar 

  3. Hooker, C. W.; Pfeiffer, C. A. The morphology and development of testicular tumors in mice of the “A” strain receiving estrogens. Cancer Res. 2:759–760; 1942.

    Google Scholar 

  4. Kirkman, H. Estrogen-induced tumors of the kidney in the syrian hamster. Natl. Cancer Inst. Monogr. 1:1–139; 1959.

    PubMed  CAS  Google Scholar 

  5. Kim, U.; Furth, J.; Yannopoulos, K. Observations on hormonal control of mammary cancer. I. Estrogen and mammotropes. JNCI 31:233–259; 1964.

    Google Scholar 

  6. Furth, J. Experimental pituitary tumors. In: Pincus, G., ed. Recent progress in hormone research, vol. 11. Orlando: Academic Press, Inc.; 1955:221–236.

    Google Scholar 

  7. Furth, J.; Clifton, K.; Gadsen, E., et al. Dependent and autonomous mammotropic pituitary tumors in rats: their somatotropic features. Cancer Res. 16:608–616; 1956.

    PubMed  Google Scholar 

  8. Wiklund, J. A.; Gorski, J. Genetic differences in estrogen-induced deoxyribonucleic acid synthesis in the rat pituitary: correlations with pituitary tumor susceptibility. Endocrinology 111:1140–1149; 1982.

    PubMed  CAS  Google Scholar 

  9. Lis, M.; Cantin, M.; Marchisio, A.-M., et al. Estrone-induced, prolactin secreting and dopamine sensitive rat pituitary tumor. Eur. J. Clin. Oncol. 20:829–839; 1984.

    Article  CAS  Google Scholar 

  10. Haran-Ghera, N.; Furth, J.; Buffet, F., et al. Studies on the pathogenesis of neoplasms by ionizing radiation. II. Neoplasms of endocrine organs. Cancer Res. 19:1181–1187; 1959.

    PubMed  CAS  Google Scholar 

  11. Yokoro, K.; Furth, J.; Haran-Ghera, N. Induction of mammotropic pituitary tumors by x-rays in rats and mice: the role of mammotropes in development of mammary tumors. Cancer Res. 21:178–186; 1961.

    PubMed  CAS  Google Scholar 

  12. Tashjian, A. H.; Yasumura, Y.; Levine, L., et al. Establishment of clonal strains of rat pituitary tumor cells that secrete growth hormone. Endocrinology 82:342–352; 1968.

    PubMed  CAS  Google Scholar 

  13. Tashjian, A. H.; Bancroft, F. C.; Levine, L. Production of both prolactin and growth hormone by clonal strains of rat pituitary tumor cells. Differential effects of hydrocortisone and tissue extracts. J. Cell Biol. 47:61–70; 1970.

    Article  PubMed  CAS  Google Scholar 

  14. Bancroft, F. C.; Tashjian, A. H. Growth in suspension culture of rat pituitary cells which produce growth hormone and prolactin. Exp. Cell Res. 64:125–128; 1971.

    Article  PubMed  CAS  Google Scholar 

  15. Sorrentino, J. M.; Kirkland, W. L.; Sirbasku, D. A. Control of cell growth. I. Estrogen-dependent growth in vivo of a rat pituitary tumor cell line. JNCI 56:1149–1154; 1976.

    PubMed  CAS  Google Scholar 

  16. Sorrentino, J. M.; Kirkland, W. L.; Sirbasku, D. A. Control of cell growth. II. Requirement of thyroid hormones for the in vivo estrogen-dependent growth of a rat pituitary tumor cells. JNCI 56:1155–1158; 1976.

    PubMed  CAS  Google Scholar 

  17. Kirkland, W. L.; Sorrentino, J. M.; Sirbasku, D. A. Control of cell growth. III. Direct mitogenic effect of thyroid hormones on an estrogen-dependent rat pituitary tumor cell line. JNCI 56:1159–1164; 1976.

    PubMed  CAS  Google Scholar 

  18. Tashjian, A. H. Clonal strains of hormone-producing pituitary cells. Methods Enzymol. 58:527–535; 1979.

    PubMed  Google Scholar 

  19. Bancroft, F. C. GH cells: functional clonal lines of rat pituitary tumor cells. In: Sato, G., ed. Functionally differentiated cell lines. New York: Alan R. Liss, Inc.; 1981:47–59.

    Google Scholar 

  20. Herrera, E.; Morrele de Escobar, G., Escobar del Rey, F. Differential effects of methylmercaptoimodazole and propylthiouracil on thyroid 131-I release in rats on perchlorate. Endocrinology 83:671–677; 1968.

    PubMed  CAS  Google Scholar 

  21. Mayberry, W. E.; Astwood, E. B. The effects of propylthiouracil on the intrathyroid metabolism of iodine in rats. J. Biol. Chem. 235:2977–2980; 1960.

    PubMed  CAS  Google Scholar 

  22. Oppenheimer, J. H.; Schwartz, H. L.; Surks, M. I. Propylthiouracil inhibits the conversion ofL-thyroxine toL-triiodothyronine. J. Clin. Invest. 51:2493–2497; 1972.

    PubMed  CAS  Google Scholar 

  23. Riss, T. L.; Sirbasku, D. A. Rat pituitary tumor cells in serum-free medium. II. Serum factor and thyroid hormone requirements for estrogen-responsive growth. In Vitro 25:136–142; 1989.

    CAS  Google Scholar 

  24. Sirbasku, D. A.; Riss, T. L. Growth of GH4C1 rat pituitary tumor cells in hormonally defined serum-free medium. J. Cell Biol. 103(pt 2):15a; 1986.

    Google Scholar 

  25. Gospodarowicz, D. Isolation and characterization of acidic and basic fibroblast growth factor. Methods Enzymol. 147:106–119; 1987.

    Article  PubMed  CAS  Google Scholar 

  26. Burleigh, B. D.; Meng, H. Development of a biosynthetic somatomedin C/IGF-I as a product for cell culture. Am. Biotechnol. Lab. 4:48–53; 1986.

    CAS  Google Scholar 

  27. Riss, T. L.; Ogasawara, M.; Karey, K. P., et al. Use of serum-free hormonally defined media to evaluate the effects of growth factors and inhibitors on proliferation of estrogen-responsive mammary and pituitary tumor cells in culture. J. Tissue Cult. Methods 10:133–150; 1986.

    Article  CAS  Google Scholar 

  28. Stewart, B. H.; Sirbasku, D. A. Requirement of a serum factor to support thyroid hormone dependent growth of GH, cells in defined medium. J. Cell. Biol. 105(pt 2):23a; 1987.

    Google Scholar 

  29. Kano-Seuoka, T.; Errick, J. E. Roles of phosphoethanolamine, ethanolamine, and prolactin on mammary cell growth. In: Sato, G. H.; Pardee, A. B.; Sirbasku, D. A. eds. Cold Spring Harbor Conferences on Cell Proliferation, vol. 9. Cold Spring, Harbor, NY: Cold Spring Harbor Press; 1982:727–740.

    Google Scholar 

  30. Hayashi, I.; Larner, J.; Sato, G. Hormonal growth control of cells in culture. In Vitro 14:23–30; 1978.

    Article  PubMed  CAS  Google Scholar 

  31. Neufeld, G.; Gospodarowicz, D. Basic and acidic fibroblast growth factors interact with the same cell surface receptor. J. Biol. Chem. 261:5631–5637; 1986.

    PubMed  CAS  Google Scholar 

  32. Riss, T. L.; Sirbasku, D. A. Growth and continuous passage of COMMA-D mouse mammary epithelial cells in hormonally defined serum-free medium. Cancer Res. 47:3776–3782; 1987.

    PubMed  CAS  Google Scholar 

  33. Karey, K. P.; Sirbasku, D. A. Differential responsiveness of the human breast cancer cell lines MCF-7 and T47D to growth factors and 17β-estradiol. Cancer Res. 48:4083–4092; 1988.

    PubMed  CAS  Google Scholar 

  34. Ogasawara, M.; Sirbasku, D. A. A new serum-free method of measuring growth factor activities for human breast cancer cells in culture. In Vitro 24:911–920; 1988.

    CAS  Google Scholar 

  35. Greenstein, L. A.; Nissley, S. P.; Moses, A. C., et al. Purification of multiplication-stimulating activity. In: Barnes, D. W.; Sirbasku, D. A.; Sato, G. H., eds. Methods for preparation of media, supplements and substrata for serum-free animal cell culture, vol. 1. New York: Alan R. Liss, Inc.; 1984:111–138.

    Google Scholar 

  36. Hayashi, I.; Sato, G. H. Replacement of serum by hormones permits growth of cells in defined medium. Nature 259:132–134; 1976.

    Article  PubMed  CAS  Google Scholar 

  37. Johnson, L. K.; Baxter, J. D.; Vlodavsky, I., et al. Epidermal growth factor and expression of specific genes: effects on cultured rat pituitary cells are dissociable from mitogenic response. Proc. Natl. Acad. Sci. USA 77:394–398; 1980.

    Article  PubMed  CAS  Google Scholar 

  38. Schonbrunn, A.; Krasnoff, M.; Westendorf, J. M. et al. Epidermal growth factor and thyrotropin-releasing hormone act similarly on a clonal pituitary cell strain: modulation of hormone production and inhibition of cell proliferation. J. Cell Biol. 85:786–797; 1980.

    Article  PubMed  CAS  Google Scholar 

  39. Barnes, D. W.; Sirbasku, D. A. Peptide growth factors. Methods in enzymology, part A, vol. 146. Orlando: Academic Press, Inc.; 1987.

    Google Scholar 

  40. Barnes, D. W.; Sirbasku, D. A., eds. Peptide growth factors. Methods in enzymology, part B, vol. 147. Orlando: Academic Press, Inc.; 1987.

    Google Scholar 

  41. Samuels, H. H.; Tsai, J. S.; Cintron, R. Thyroid hormone action: a cell-culture system responsive to physiological concentrations of thyroid hormones. Science 181:1253–1256; 1973.

    Article  PubMed  CAS  Google Scholar 

  42. Stewart, B. H.; Sirbasku, D. A. Identification of a serum factor which mediates thyroid hormone dependent growth of GH1 rat pituitary tumor cells in defined medium. FASEB J. 2:A359; 1988.

    Google Scholar 

  43. Samuels, H. H.; Tsai, J. S.; Casanova, J., et al. Thyroid hormone action: in vitro characterization of solubilized nuclear receptor from rat liver and cultured GH1 cells. J. Clin. Invest. 54:853–865; 1974.

    PubMed  CAS  Google Scholar 

  44. Samuels, H. H.; Shapiro, L. S. Thyroid hormone stimulates de novo growth hormones synthesis in cultured GH1 cells: evidence for accumulation of a rate limiting RNA species in the induction process. Proc. Natl. Acad. Sci. USA 73:3369–3373; 1976.

    Article  PubMed  CAS  Google Scholar 

  45. Kumari-Siri, M. H.; Surks, M. I. Regulation of growth hormone mRNA synthesis by 3,5,3′-triiodothyronine in cultured growth hormone producing rat pituitary tumor cells (GC). Dissociation between nuclear iodothyronine receptor concentration and growth hormone mRNA synthesis in (S) phase of the cell cycle. J. Biol. Chem. 260:14529–14537; 1985.

    Google Scholar 

  46. Thompson, C. C.; Weinberger, C.; Lebo, R., et al. Identification of a novel thyroid hormone receptor expressed in the mammalian central nervous system. Science 237:1610–1614; 1987.

    Article  PubMed  CAS  Google Scholar 

  47. Hinkle, P. M.; Kinsella, P. A. Thyroid hormone induction of an autocrine growth factor secreted by pituitary tumor cells. Science 234:1549–1552; 1986.

    Article  PubMed  CAS  Google Scholar 

  48. Miller, M. J.; Fels, E. C.; Shapiro, L. E., et al.L-Triiodothyronine stimulates growth by means of an autocrine factor in a cultured growth hormone-producing cell line. J. Clin. Invest. 79:1773–1781; 1987.

    PubMed  CAS  Google Scholar 

  49. Fagin, J. A.; Pixley, S.; Slanina, S., et al. Insulin-like growth factor I gene expression in GH3 rat pituitary cells: messenger ribonucleic acid content, immunocytochemistry and secretion. Endocrinology 120:2037–2043; 1987.

    Article  PubMed  CAS  Google Scholar 

  50. Rosenfeld, R. G.; Ceda, G.; Cutler, C. W., et al. Insulin and insulin-like growth factor (somatomedin) receptors on cloned rat pituitary tumor cells. Endocrinology 117:2008–2016; 1985.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

This work was supported by grants CA-26617 and CA-38024 from the National Cancer Institute, Bethesda, MD, American Cancer Society grant BC-255, and grant 2225 from the Council for Tobacco Research, Inc., USA.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Riss, T.L., Stewart, B.H. & Sirbasku, D.A. Rat pituitary tumor cells in serum-free culture. I. Selection of thyroid hormone-responsive and autonomous cells. In Vitro Cell Dev Biol 25, 127–135 (1989). https://doi.org/10.1007/BF02626168

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02626168

Key words

Navigation