Skip to main content
Log in

Isolation and characterization of endothelial cells from bovine cerebral arteries

  • Regular Papers
  • Published:
In Vitro Cellular & Developmental Biology Aims and scope Submit manuscript

    We’re sorry, something doesn't seem to be working properly.

    Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

Summary

For our laboratory's investigation into the role of the endothelial cells in vasospasm following subarachnoid hemorrage and in inflammatory diseases, we found it necessary to dvise a modified method of cell culture, which would be appropriate for studying human endothelial cells from lobectomized brain. We report our techniques to increase cell harvest and ensure reproducibility, our method of culturing endothelial cells from bovine major cerebral arteries, and our morphologic and immunocytochemical charcterization of thee cells. To increase the harvest of endothelial cells, the blood cells were washed from the lumen of the major cerebral arteries at the slaughterhouse and a modified reversed vessel technique was employed. The monolayer of cultured endothelial cells displayed a cobblestone appearance when it reached confluency and transmission electron microscopy revealed junctional complexes and interdigitation of cytoplasm at Passages 10 and 17. The cells stained positively for Factor VIII-related antigen at Passages 3, 5, 7, 10, and 15. Also the cells metabolized acetylated low-density lipoprotein at Passage 3. To determine th purity of the cultured endothelial cells, an immunocytochemical study of the cytoskeleton was performed on Passage 5 cells using either rhodamine-phalloidin or antibodies against smooth muscle myosin, desmin, and vimentin.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Alksne, J. F.; Smith, R., W. Experimental models of spasm. Clin. Neurosurg. 24:216–227; 1977.

    PubMed  CAS  Google Scholar 

  2. Arnold, M.; Herring, M. A. Method of immediate endothelial seeding suitable for clinical application. In: Herring, M.; Glover, J. L., eds. Endothelial seeding in vascular surgery. New York: Harcourt Brace Jovanovich Publishers 1987:165–171.

    Google Scholar 

  3. Bottalo, D.; Shepro, D.; Hecktman, H. B. Heterogeneity of intimal and microvesel endothelial cell barriers in vitro. Microvasc. Res. 32:389–398; 1986.

    Article  Google Scholar 

  4. Bowman, P. D.; Betz, A. L.; Ar, D., et al. Primary culture of capilalry endothelium from rat brain. In Vitro 17:353–362; 1981.

    Article  PubMed  CAS  Google Scholar 

  5. Chamley, J. H.; Campbell, G. R.; McConell, J. D., et al. Comparison of vascular smooth muscle cells from adult human, monkey, and rabbit in primary culture and in subculture. Cell. Tissue Res. 177:503–522; 1977.

    PubMed  CAS  Google Scholar 

  6. Chand, N.; Altra, B. M. Acetylcholine and bradykinin relax intrapulmonary arteries by acting on endothelial cells: role in lung vascular diseases. Science 213:1376–1379; 1981.

    Article  PubMed  CAS  Google Scholar 

  7. Clower, B. R.; Yoshioka, J.; Honman, Y., et al. Pathological changes in cerebral arteries following experimental subarchnoid hemorrhage: role of blood platelets. Anat. Rec. 220(2):161–170; 1988.

    Article  PubMed  CAS  Google Scholar 

  8. De Bault, L. E.; Kahn, L. E.; Frommes,, S. P., et al. Cerebral microvessels and derived cells in tissue culture: isolation and preliminary characterization. In Vitro 15:473–487; 1979.

    Article  Google Scholar 

  9. De May, J. G.; Claeys, M.; Vanhoutte, P. M. Endotheliumdependent inhibitory effects of acetylcholine, adenosine triphosphate, thrombin and arachidonic acid in the canine femoral artery. J. Pharmacol. Exp. Ther. 222:166–173; 1982

    Google Scholar 

  10. Diglio, C. A.; Grammas, P.; Giacomelli, F., et al. Primary culture of rat cerebral microvascular endothelial cells. Isolation, growth, and characterization. Lab. Invest. 46:554–563; 1982.

    PubMed  CAS  Google Scholar 

  11. Eckman, P. L.; King, W. M.; Brunson, J. G. Studies on the blood brain barrier. I. Effects produced by a single injection of Gram-negative endotoxin on the permeability of the cerebral vessels. Am. J. Pathol. 34:631–639; 1958.

    PubMed  CAS  Google Scholar 

  12. Eng, L. F.; Vanderhaeghen, J. J.; Bignami, A., et al. An acidic protein isolated from fibrous astrocytes. Brain Res. 28:351–354; 1971.

    Article  PubMed  CAS  Google Scholar 

  13. Fay, F. S.; Delise, C. M. Contraction of isolated smooth-muscle cells-structural changes. Proc. Natl. Acad. Sci. USA 70:641–645; 1973.

    Article  PubMed  CAS  Google Scholar 

  14. Franke, W. W.; Weber, K.; Osborn, M., et al. Antibody to prekeratin. Decoration of tonofilament-like arrays in various cells of epithelial character. Exp. Cell Res. 116:429–445; 1978.

    Article  PubMed  CAS  Google Scholar 

  15. Fujiwara, S.; Kassell, N. F.; Sasaki, T., et al. Selective hemoglobin inhibition of endothelium-dependent vasodilation of rabbit basilar artery. J. Neurosurg. 64:445–452; 1986.

    PubMed  CAS  Google Scholar 

  16. Furchgott, R. F.; Zawadzki, J. V. The obligatory role of endothelial cells in the relaxation of arterial smooth muscle by acetylcholine. Nature 288:373–376; 1980.

    Article  PubMed  CAS  Google Scholar 

  17. Goetz, I. E.; Warren, J.; Estrada, C., et al. Long-term serial cultivation of arterial and capillary endothelium from adult bovine brain. In Vitro Cell. Dev. Biol. 21:172–180; 1985.

    Article  PubMed  CAS  Google Scholar 

  18. Gospodarowicz, D.; Morgan, J.; Braun, D., et al. Clonal growth of bovine vascular endothelial cells: fibroblasts growth factor as a survival agent. Proc. Natl. Acad. Sci. USA 73:4120–4124; 1976.

    Article  PubMed  CAS  Google Scholar 

  19. Greitz, T. Angiography in tuberculous meningitis., Acta Radiol. Diagn. 2:369–378; 1964.

    CAS  Google Scholar 

  20. Hoch, H. C.; Staphes,, R. C. Visualization of actin in sity by Rhodamine-conjugated Phalloidin in the fungus uromyces phaseoli. Eur. J. Cell Biol. 32:52–58; 1983.

    PubMed  CAS  Google Scholar 

  21. Hoffmann, P. N.; Lasek, R. J. The slow component of axonal transport. Identification of major structural polypeptides of the axon and their generality among mammalian neurons. J. Cell Biol. 66:351–366; 1975.

    Article  Google Scholar 

  22. Jaffe, E. A.; Hoyer, L. W.; Nachman, R. L. Synthesis of antihemophilic globulin by cultured human endothelial cells. J. Clin. Invest. 52:2757–2764; 1973.

    PubMed  CAS  Google Scholar 

  23. Konda, R.; Ishibashi, Y.; Okada, H., et al. Sequential changes of vascular intimal ultrastructure in experimental cerebral vasospasm induced by oxyghemoglobin. Scanning electron microscopic study. Brain Nerve 36(3):275–283; 1984.

    PubMed  CAS  Google Scholar 

  24. Lazarides, E.; Hubbard, B. D. Immunological characterization of the subunit of the 100 nm filaments from muscle cells. Proc. Natl. Acad. Sci. USA 76:4344–4348; 1976.

    Article  Google Scholar 

  25. Leeds, N. E.; Goldberg, H. I. Angiographic manifestations in cerebral inflammatory disease. Radiology 98:595–604; 1971.

    PubMed  CAS  Google Scholar 

  26. Liszczak, T. M.; Varsos, V. G.; Black, P. M., et al. Cerebral arteiral constriction after experimental subarachnoid hemorrhage is associated with blood components within the arterial wall. J. Neurosurg. 58(1):18–26; 1983.

    PubMed  CAS  Google Scholar 

  27. McDonald, R. I.; Shepro, D.; Rosenthal, M., et al. Properties of cultured endothelial cells. Ser. Haematol. 4:469–478; 1973.

    Google Scholar 

  28. Machi, T. Effects of KCl on distribution of vimentin in cultured cells. Fukuoka Acta Med. 77:333–347; 1986.

    PubMed  CAS  Google Scholar 

  29. Marks, R. M.; Czerniecki, M.; Penny, R. Human dermal microvascular endothelial cells: an improved method for tissue culture and a description of some singular properties in culture. In Vitro Cell. Dev. Biol. 21:627–634; 1985.

    Article  PubMed  CAS  Google Scholar 

  30. Maruyama, Y. The human endothelial cell in tissue culture. Z. Zellforsch. Mikrosk. Anat. 60:69–79; 1963.

    Article  PubMed  CAS  Google Scholar 

  31. Merrilees, M. J.; Scott, L. Culture of rat and pig aortic endothelial cells: differences in their isolation, growth rate and glycoaminoglycan synthesis. Atherosclerosis 38:19–26; 1981.

    Article  CAS  Google Scholar 

  32. Nagy, Z.; Pettigrew, K. W.; Meiselman, S., et al. Cerebral vessles cryofixed after hyperssmosis or cold injury in normothermic and hypothermic frogs. Brain Res. 440(2):315–327; 1988.

    Article  PubMed  CAS  Google Scholar 

  33. Nakagomi, T.; Kassell, N. F.; Sasaki, T., et al. Impairment of endothelium-dependent vasodilation induced by acetylcholine and adenosine trisphosphate following experimental subarachnoid hemorrhage. Stroke 18(2):482–489; 1987.

    PubMed  CAS  Google Scholar 

  34. Nakagomi, T.; Kassell, N. F.; Sasaki, T., et al. Effect of subarchnoid hemorrhage on endothelium-dependent vasodilation. J. Neurosurg. 66(6):915–923; 1987.

    Article  PubMed  CAS  Google Scholar 

  35. Opas, M.; Kalnins, V. I. Multiple labeling of cellular constituents by combiningsurface refraction interference and fluorescence microscopy. Exp. Cell Biol. 53:241–251; 1985.

    PubMed  CAS  Google Scholar 

  36. Phillips, P.; Kumar, P.; Kumar, S., et al. Isolation and characterization of endothelial cells from rat and cow brain white matter. J. Anat. 129:261–272; 1979.

    PubMed  CAS  Google Scholar 

  37. Quagliarello, V. J.; Long, W. J.; Scheld, W. M. Morphologic alterations of the blood-brain barrier with experimental meningitis in the rat. Temporal sequence and role of encapsulation. J. Clin. Invest. 77(4):1084–1093; 1986.

    PubMed  CAS  Google Scholar 

  38. Ramaekers, F. C. S.; Puts, J. J. G.; Kant, A., et al. Use of antibodies to intermediate filaments in the characterization of human tumors. Cold Spring Harb. Quant. Biol. 46:331–339; 1982.

    Google Scholar 

  39. Ross, R. The smooth muscle cell. II. Growth of smooth muscle in culture and formation of elastic fibres. J. Cell Biol. 50:172–186; 1971.

    Article  PubMed  CAS  Google Scholar 

  40. Ryan, U. S.; Clements, E.; Habliston, D., et al. Isolation and culture of pulmonary artery endothelial cells. Tissue & Cell 10(3):535–554; 1978.

    CAS  Google Scholar 

  41. Sasaki, T.; Kassell, N. F.; Zuccarello, M., et al. Barrier disruption in the major cerebral arteries during the acute stage after experimental subarchnoid hemorrhage. Neurosurgery 19(2):177–184;1986.

    Article  PubMed  CAS  Google Scholar 

  42. Schor, A. M.; Schor, S. L.; Allen, T. D. Effects of culture conditions on the proliferation, morphology and migration of bovine aortic endothelial cells. J. Cell Sci. 62:267–285; 1983.

    PubMed  CAS  Google Scholar 

  43. Schwartz, S. M. Selection and characteization of bovine aortic endothelial cells. In Vitro 14:966–980; 1978.

    Article  PubMed  CAS  Google Scholar 

  44. Stein, O.; Stein, Y. Bovine aortic endothelial cells display macrophage-like properties towards acetylade [125I]-labeled low density lipoprotein. Biochim. Biophys. Acta. 620:631–635; 1980.

    PubMed  CAS  Google Scholar 

  45. Sun, T.-T.; Green, H. Immunofluorescnece staing of keratin fibers in cultured cells. Cell 14:469–476; 1978.

    Article  PubMed  CAS  Google Scholar 

  46. Takase, S.; Leo, M. A.; Nouchi, T., et al. Desmin distinguishes cultured fat-storing cells from myofibroblasts, smooth muscle cells and fibroblasts in the rat. J. Hepatol. 6:267–276; 1988.

    Article  PubMed  CAS  Google Scholar 

  47. Travo, P.; Weber, K.; Osborn, M. Co-existence of vimentin and desmin type intermediate filaments in a subpopulation of adult rat vascular smooth muscle cells growing in primary culture. Exp. Cell Res. 139:87–94; 1982.

    Article  PubMed  CAS  Google Scholar 

  48. Vinters, H. V.; Reave, S.; Castello, P., et al. Isolation and culture of cells derived from human cerebral microsvesels. Cell Tissue Res. 249:657–667; 1987.

    Article  PubMed  CAS  Google Scholar 

  49. Voyta, J. C.; Via, D. P.; Butterfield, C. E., et al. Identification and isolation of endothelial cells based on their increased uptake of acetylated-low density lipoprotein. J. Cell Biol. 99:2034–2040; 1984.

    Article  PubMed  CAS  Google Scholar 

  50. Wispelway, B.; Lesse, A. J.; Hansen, E. J., et al. Haemophilus influenzae lipopolysaccharide-induced blood brain barrier permeability during experimental meningitis in the rat. J. Clin. Invest. 82(4):1339–1346; 1988.

    Article  Google Scholar 

  51. Yamamoto, H. Studies on the cultured rat aortic media smooth muscle cells. Fukuoka Acta Med. 74:532–549; 1983.

    PubMed  CAS  Google Scholar 

  52. Yamashima, T.; Kashihara, K.; Ikeda, K., et al. The phases of cerebral arteriopathy in meningitis: vasospasm and vasodilatation followed by organic stenoisis. Neurosurgery 16(4):546–553; 1985.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Machi, T., Kassell, N.F. & Scheld, W.M. Isolation and characterization of endothelial cells from bovine cerebral arteries. In Vitro Cell Dev Biol 26, 291–300 (1990). https://doi.org/10.1007/BF02624460

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02624460

Key words

Navigation