Skip to main content
Log in

Cultivation of HeLa cells with fetal bovine serum or ultroser G: Effects on the plasma membrane constitution

  • Regular Papers
  • Published:
In Vitro Cellular & Developmental Biology Aims and scope Submit manuscript

Summary

Plasma membranes isolated from HeLa cells cultivated in suspension cultures supplemented with 3.5% fetal bovine serum or 2% of the commercially available serum substitute Ultroser G contained the same amounts of protein, cholesterol, and phosphate on a cellular basis. Minor differences in the plasma membrane fatty acid composition were seen, with the most pronounced alteration observed for palmitic acid, which amounted to 27 and 20% in fetal bovine serum- and Ultroser G-supplemented cells, respectively. Plasma membranes from cells growth with Ultroser G contained almost twice as much phosphatidylethanolamine and displayed two thirds of the phosphatidylcholine content, compared to plasma membranes obtained from fetal bovine serum supplemented cells. The former membranes also showed a 3 times higher specific [3H]acetate labeling of cholesterol, indicating a higherde novo synthesis of cholesterol. Both quantitative and qualitative alterations were revealed among the plasma membrane polypeptides when these were subjected to immuno- and lectin blottings. Fluorescence anisotropy measurements at different temperatures produced similar results irrespective of the growth medium supplement when the plasma membrane specific probe 1-(4-trimethylammoniumphenyl)-6-phenyl-1,3,5-hexatriene was used on intact cells. However, the average cellular rigidity was higher for Ultroser G supplemented cells, determined with 1,6-diphenyl-1,3,5-hexatriene as a probe.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Ames, G. F. Lipids ofSalmonella typhimurium andEscherichia coli: structure and metabolism. J. Bacteriol. 95:833–843; 1968.

    PubMed  CAS  Google Scholar 

  2. Atkinson, P. H.; Summers, D. F. Purification and properties of HeLa cell plasma membranes. J. Biol. Chem. 246:5162–5175; 1971.

    PubMed  CAS  Google Scholar 

  3. Barnes, D.; Sato, G. Methods for growth of cultured cells in serum-free medium. Anal. Biochem. 102:255–270; 1980.

    Article  PubMed  CAS  Google Scholar 

  4. Barnes, D.; Sato, G. Serum-free cell culture: a unifying approach. Cell 22:649–655; 1980.

    Article  PubMed  CAS  Google Scholar 

  5. Bettger, W. J.; Boyce, S. T.; Walthall, B. J., et al. Rapid clonal growth and serial passage of human diploid fibroblasts in a lipid-enriched synthetic medium supplemented with epidermal growth factor, insulin, and dexamethasone. Proc. Natl. Acad. Sci. USA 78:5588–5592; 1981.

    Article  PubMed  CAS  Google Scholar 

  6. Blake, M. S.; Johnston, K. H.; Russell-Jones, G. J., et al. A rapid, sensitive method for detection of alkaline phosphataseconjugated anti-antibody on Western blots. Anal. Biochem. 136:175–179; 1984.

    Article  PubMed  CAS  Google Scholar 

  7. Bligh, E. G.; Dyer, W. J. A rapid method of total lipid extraction and purification. Can. J. Biochem. Physiol. 37:911–917; 1959.

    PubMed  CAS  Google Scholar 

  8. Bottenstein, J. E.; Sato, G. H. Growth of a rat neuroblastoma cell line in serum-free supplemented medium. Proc. Natl. Acad. Sci. USA 76:514–517; 1979.

    Article  PubMed  CAS  Google Scholar 

  9. Brown, M. S.; Goldstein, J. L. Receptor-mediated endocytosis: insight from the lipoprotein receptor system. Proc. Natl. Acad. Sci. USA 76:3330–3337; 1979.

    Article  PubMed  CAS  Google Scholar 

  10. Brunette, D. M.; Till, J. E. A rapid method for the isolation of L-cell surface membranes using an aqueous two-phase polymer system. J. Membr. Biol. 5:215–224; 1971.

    Article  CAS  Google Scholar 

  11. Burns, C. P.; Wei, S-P. L.; Spector, A. A. Fatty acid metabolism in L1210 murine leukemia cells: differences in modification of fatty acids incorporated into various lipids. Lipids 13:666–672; 1978.

    Article  PubMed  CAS  Google Scholar 

  12. Esko, J. D.; Gilmore, J. R.; Glaser, M. Use of a fluorescent probe to determine the viscosity of LM cell membranes with altered phospholipid composition. Biochemistry 16:1881–1890; 1977.

    Article  PubMed  CAS  Google Scholar 

  13. Esko, J. D.; Matsuoka, K. Y. Biosynthesis of phosphatidylcholine from serum phospholipids in chinese hamster ovary cells deprived of choline. J. Biol. Chem. 258:3051–3057; 1983.

    PubMed  CAS  Google Scholar 

  14. Esko, J. D.; Raetz, C. R. H. Synthesis of phospholipids in animal cells. In: Boyer, P. D., ed. The enzymes, vol. 16. Lipid enzymology. New York: Academic Press; 1983:207–253.

    Google Scholar 

  15. Everitt, E.; Svensson, U.; Wohlfart, C., et al. Requirements for initial adenovirus uncoating and internalization. In: Crowell, R. L.; Lonberg-Holm, K. eds. Virus attachment and entry into cells. Washington, DC: American Society for Microbiology; 1986:196–204.

    Google Scholar 

  16. Freter, C. E.; Ladenson, R. C.; Silbert,D. F. Membrane phospholipid alterations in response to sterol depletion of LM cells. J. Biol. Chem. 254:6909–6916; 1979.

    PubMed  CAS  Google Scholar 

  17. Hartree, E. F. Determination of protein: a modification of the Lowry method that gives a linear photometric response. Anal. Biochem. 48:422–427; 1972.

    Article  PubMed  CAS  Google Scholar 

  18. Hutchings, S. E.; Sato, G. H. Growth and maintenance of HeLa cells in serum-free medium supplemented with hormones. Proc. Natl. Acad. Sci. USA 75:901–904; 1978.

    Article  PubMed  CAS  Google Scholar 

  19. Illingworth, D. R.; Portman, O. W.; Robertson, A. L., Jr., et al. The exchange of phospholipids between plasma lipoproteins and rapidly dividing human cells grown in tissue culture. Biochim. Biophys. Acta306:422–436; 1973.

    PubMed  CAS  Google Scholar 

  20. Maizel, J. V., Jr. Polyacrylamide gel electrophoresis of viral proteins. In: Maramorosch, K.; Koprowski, H., eds. Methods in virology, vol. V. New York/London: Academic Press Inc.; 1971:179–246.

    Google Scholar 

  21. McClare, C. W. F. An accurate and convenient organic phosphorus assay. Anal. Biochem 39:527–530; 1971.

    Article  PubMed  CAS  Google Scholar 

  22. McGee, R., Jr. Membrane fatty acid modification of the neuroblastoma X glioma hybrid, NG108-15. Biochim. Biophys. Acta 663:314–328; 1981.

    PubMed  CAS  Google Scholar 

  23. Morrison, R. S.; de Vellis, J. Growth of purified astrocytes in chemically defined medium. Proc. Natl. Acad. Sci. USA 78:7205–7209; 1981.

    Article  PubMed  CAS  Google Scholar 

  24. Myara, I.; Polini, G.; Scotto, J., et al. The use of Ultroser G as a serum substitute in the culture of human skin fibroblasts. Biol. Cell 57:243–248; 1986.

    PubMed  CAS  Google Scholar 

  25. Peterson, J. A.; Rubin, H. The exchange of phospholipids between cultured chick embryo fibroblasts and their growth medium. Exp. Cell Res. 58:365–378; 1969.

    Article  PubMed  CAS  Google Scholar 

  26. Portman, O. W.; Illingworth, D. R. Lysolecithin binding to human and squirred monkey plasma and tissue components. Biochim. Biophys. Acta. 326:34–42; 1973.

    PubMed  CAS  Google Scholar 

  27. Prendergast, F. G.; Haugland, R. P.; Callahan, P. J. 1-[4-(Trimethylamino)phenyl]-6-phenylhexa-1,3,5-triene: synthesis, fluorescence properties, and use as a fluorescence probe of lipid bilayers. Biochemistry 20:7333–7338; 1981.

    Article  PubMed  CAS  Google Scholar 

  28. Product Information, Ultroser G, No. 202908, Villeneuve-la-Gavenne, France: Réactifs IBF.

  29. Roelofsen, B.; Zwaal, R. F. A. The use of phospholipases in the determination of asymmetric phospholipid distribution in membranes. In: Korn, E. D., ed. Methods in membrane biology, vol. 7. New York: Plenum Press; 1976:147–177.

    Google Scholar 

  30. Ronot, X.; Sene, C.; Boschetti, E., et al. Culture of chondrocytes in medium supplemented with fetal calf serum or a serum substitute.Ultroser G. Biol. Cell 51:307–314; 1984.

    CAS  Google Scholar 

  31. Shinitzky, M.; Barenholz, Y.Fluidity parameters of lipid regions determined by fluorescence polarization. Biochim. Biophys. Acta 515:367–394; 1978.

    PubMed  CAS  Google Scholar 

  32. Spector, A. A.; Kiser, R. E.; Denning, G. M., et al. Modification of the fatty acid composition of cultured human fibroblasts. J. Lipid Res.20:536–547; 1979.

    PubMed  CAS  Google Scholar 

  33. Spector, A. A.; Mathur, S. N.; Kaduce, T. L., et al. Lipid nutrition and metabolism of cultured mammalian cells. Prog. Lipid Res. 19:155–186; 1981.

    Article  Google Scholar 

  34. Stubbs, C. D.; Smith, A. D. The modification of mammalian membrane polyunsaturated fatty acid composition in relation to membrane fluidity and function. Biochim. Biophys. Acta 779:89–137; 1984.

    PubMed  CAS  Google Scholar 

  35. Sundler, R.; Åkesson, B. Regulation of phospholipid biosynthesis in isolated rat hepatocytes. J. Biol. Chem. 250:3359–3367; 1975.

    PubMed  CAS  Google Scholar 

  36. Svensson, U.; Persson, R.; Everitt, E. Virus-receptor interaction in the adenovirus system. I. Identification of virion attachment proteins of the HeLa cell plasma membrane. J. Virol. 38:70–81; 1981.

    PubMed  CAS  Google Scholar 

  37. Switzer, S.; Eder, H. A. Transport of lysolecithin by albumin in human and rat plasma. J. Lipid Res. 6:506–511; 1965.

    PubMed  CAS  Google Scholar 

  38. Taub, M.; Chuman, L.; Saier, M. H., Jr., et al. Growth of Madin-Darby canine kidney epithelial cell (MDCK) line in hormone-supplemented, serum-free medium. Proc. Natl. Acad. Sci. USA 76:3338–3342; 1979.

    Article  PubMed  CAS  Google Scholar 

  39. Tijburg, L. B. M.; Geelen, M. J. H.; Van Golde, L. M. G. Biosynthesis of phosphatidylethanolamine via the CDP-ethanolamine route is an important pathway in isolated rat hepatocytes. Biochem. Biophys. Res. Commun. 160:1275–1280; 1989.

    Article  PubMed  CAS  Google Scholar 

  40. Vance, D. E. Phospholipid metabolism in eucaryotes. In: Vance, D. E.; Vance, J. E. eds. Biochemistry of lipids and membranes. Menlo Park, CA: The Benjamin/Cummings Publishing Company, Inc.; 1985:242–270.

    Google Scholar 

  41. Wu, R.; Sato, G. H. Replacement of serum in cell culture by hormones: a study of hormonal regulation of cell growth and specific gene expression. J. Toxicol. Environ. Health 4:427–448; 1978.

    Article  PubMed  CAS  Google Scholar 

  42. Yeoh, G.; Douglas, A.; Brighton, V. Long-term culture of fetal rat hepatocytes in media supplemented with fetal calf serum, Ultroser SF or Ultroser G. Biol. Cell 58:53–64; 1986.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

This investigation was supported by grants from the Swedish Natural Science Research Council, Anders Otto Swärds Stiftelse, Stockholm, Crafoordska Stiftelsen, Lund and Kungl. Fysiografiska Sällskapet, Lund.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Blixt, Y., Valeur, A. & Everitt, E. Cultivation of HeLa cells with fetal bovine serum or ultroser G: Effects on the plasma membrane constitution. In Vitro Cell Dev Biol 26, 691–700 (1990). https://doi.org/10.1007/BF02624425

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02624425

Key words

Navigation