Skip to main content
Log in

Culture of human hepatocytes from small surgical liver biopsies. Biochemical characterization and comparison with in vivo

  • Regular Papers
  • Published:
In Vitro Cellular & Developmental Biology Aims and scope Submit manuscript

Summary

High yields of human hepatocytes (up to 23×106 viable cells/g) were obtained from small surgical liver biopsies (1 to 3 g) by a two-step collagenase microperfusion method. Cell viability was about 95%, attachment efficiency of hepatocytes seeded on fibronectin-coated plates was 80% within 1 h after plating, and cells survived for about 2 wk in serum-free Ham’s F12 containing 0.2% bovine serum albumin, 10−8 M insulin, and 10−8 M dexamethasone. To evaluate the metabolism of human hepatocytes in serum-free conditions, we measured their most characteristic biochemical functions and compared them to those reported for human liver. After 24 h in culture, glycogen content was 1250±177 nmol glucose/mg cell protein and remained stable for several days. Gluconeogenesis from lactate in hormone-free media was (3.50±0.17 nmol glucose·mg−1·min−1) similar to that reported for human liver. Insulin at 10−8 M activated glycolysis (×1.40) and glycogenesis (×1.34), and glucagon at 10−9 M stimulated gluconeogenesis (×1.35) and glycogenolysis (×2.18). Human hepatocytes synthesized albumin, transferrin, fibrinogen, α1-antitrypsin, α1-antichymotrypsin, α1-acid glycoprotein, haptoglobin, α2-macroglobulin, and plasma fibronectin and excreted them to the culture medium. Maximum protein synthesis was stimulated by 10−9 M dexamethasone. Basal urea synthesis oscillated between 2.5 and 3.5 nmol·mg−1 cell protein·min−1, about 5 times the value estimated for human liver. Cytochrome P-450 decreased in culture but it was still 20% of freshly isolated hepatocytes by Day 5 in culture. In addition, ethoxycumarin-O-deethylase and aryl hydrocarbon hydroxylase could be induced in vitro by treatment with methyl cholanthrene. Glutathione levels were similar to those reported for human liver (35 nmol·mg−1).

The results of our work show that adult human hepatocytes obtained from small surgical biopsies and cultured in chemically defined conditions express their most important metabolic functions to an extent that is similar to that reported for adult human liver.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Guguen-Guillouzo, C.; Campion, J. P.; Brissot, D., et al.: High yield preparation of isolated human adult hepatocytes by enzymatic perfusion of the liver. Cell. Biol. Int. Rep. 6: 625–628; 1982.

    Article  PubMed  CAS  Google Scholar 

  2. Strom, S. C.; Jirtle, R. L.; Jones, R. S., et al. Isolation, culture, and transplantation of human hepatocytes. J. Natl. Cancer Inst. 68: 771–778; 1982.

    PubMed  CAS  Google Scholar 

  3. Ballet, F.; Bouma, M. E.; Wang, S. R., et al. Isolation, culture and characterization of adult human hepatocytes from surgical liver biopsies. Hepatology 4: 849–854; 1984.

    PubMed  CAS  Google Scholar 

  4. Guguen-Guillouzo, C.; Bourel, M.; Guillouzo, A.. Human hepatocyte cultures. In: Popper, H.; Schaffner, F., eds. Progress in liver diseases, vol. 8. New York: Grune and Stratton; 1986: 33–49.

    Google Scholar 

  5. Feliu, J. E.; Coloma, J.; Gómez-Lechón, M. J., et al. Effect of dexamethasone on isozyme patterns of adult rat liver parenchymal cells in primary culture. Mol. Cell. Biochem. 45: 73–81; 1984.

    Google Scholar 

  6. Gómez-Lechón, M. J.; García, M. D.; Castell, J. V. Effect of glucocorticoids on the expression of GGT and TAT in serum-free cultured hepatocytes. Hoppe-Seyler’s Z. Physiol. Chem. 364: 501–508; 1983.

    PubMed  Google Scholar 

  7. López, P.; Gómez-Lechón, M. J.; Castell, J. V. Glycogen synthesis in serum-free cultured hepatocytes in response to insulin and dexamethasone. In Vitro 20: 923–931; 1984.

    Article  PubMed  Google Scholar 

  8. Castell, J. V.; Gómez-Lechón, M. J.; Coloma, J., et al. Preservation of the adult functionality of hepatocytes in serum-free cultures. In: Fisher, G.; Wieser, R., eds. Hormonally defined medium. A tool in cell biology. Berlin: Springer Verlag; 1983: 333–336.

    Google Scholar 

  9. Ichiara, A.; Nakamura, T.; Tanaka, H. Use of hepatocytes in primary culture for biochemical studies on liver functions. Mol. Cell. Biol. Chem. 43: 145–160; 1982.

    Google Scholar 

  10. Guillouzo, A.; Beaune, P.; Gascoin, M. N. Maintenance of cytochrome P-450 in cultured human hepatocytes. Biochem. Pharmacol. 34: 2995–2997; 1985.

    Article  Google Scholar 

  11. Grant, M. G.; Burke, M. D.; Haswksworth, G. M., et al. Human hepatocytes in primary monolayer cultures. Maintenance of mixed function oxidase and conjugation pathways of drug metabolism. Biochem. Pharmacol. 36: 2311–2316; 1986.

    Article  Google Scholar 

  12. Bouma, M. E.; Pessah, G.; Renaud, G., et al. Synthesis and secretion of lipoproteins by human hepatocytes in culture. In Vitro Cel. Dev. Biol. 24: 850–89; 1989.

    Google Scholar 

  13. Gómez-Lechón, M. J.; López, P.; Castell, J. V. Biochemical functionality and recovery of hepatocytes after deep freezing storage. In Vitro. 20: 826–832; 1984.

    PubMed  Google Scholar 

  14. Andus, T.; Gross, V.; Tran-Thi, T. A., et al. The biosynthesis of acute-phase proteins in primary cultures of rat hepatocytes. Eur. J. Biochem. 133: 561–571; 1983.

    Article  PubMed  CAS  Google Scholar 

  15. Hames, B. D. Detection of radioactive proteins. In: Hames, B. D.; Rickwood, D., eds. Gel electrophoresis of proteins: a practical approach. London: IRL Press Limited. 1981: 50–59.

    Google Scholar 

  16. Castell, J. V.; Montoya, A.; Larrauri, A., et al. Effects of benorylate and impacina on the metabolism of cultured hepatocytes. Xenobiotica 15: 743–749; 1985.

    Article  PubMed  CAS  Google Scholar 

  17. Gutmann, I.; Wahlefeld, A. W.; Determination ofl(+)-lactate with lactate dehydrogenase and NAD. In: Bergmeyer, H., ed. Methods of enzymatic analysis, vol 4. New York: Academic Press. 1974: 1464–1468.

    Google Scholar 

  18. Good, C. A.; Kramer, H.; Somogyi, M. The determination of glycogen. J. Biol. Chem. 100: 485–491; 1933.

    CAS  Google Scholar 

  19. Hassid, W. Z.; Abraham, S. Chemical procedures for analysis of polysaccharides. In: Colowick, S. P.; Kaplan, N. O., eds. Methods in enzymology, vol III. New York: Academic Press. 1957: 37–54.

    Google Scholar 

  20. Holme, J. A.; Soderlund, E.; Dybing, E. Drug metabolism activities in isolated rat hepatocytes in monolayer culture. Acta Pharmacol. Toxicol. 52: 348–356; 1983.

    Article  CAS  Google Scholar 

  21. Omura, T.; Sato, R. The carbon monoxide-binding pigment of liver microsomes, J. Biol. Chem. 239: 2370–2378; 1964.

    PubMed  CAS  Google Scholar 

  22. Nebert, D. W.; Gelboin, H. V.; Substrate-inducible microsomal aryl hydroxylase in mammalian cell culture. J. Biol. Chem. 243: 6242–6249; 1968.

    PubMed  CAS  Google Scholar 

  23. Greenlee, W. F.; Poland, A.. An improved assay of 7-ethoxycoumarin-O-deethylase activity: induction of hepatic enzyme activity in C57BL/GJ and BDA/2J mice by phenobarbital, 3-methylcholanthrene and 2,3,7,8-tetrachorodibenzo-p-dioxin. J. Pharmacol. Exp. Ther. 205: 596–605; 1978.

    PubMed  CAS  Google Scholar 

  24. Hissin, P. J.; Hilf, R. A fluorimetric method for determination of oxidized and reduced glutathione in tissues. Anal. Biochem. 74: 214–226; 1976.

    Article  PubMed  CAS  Google Scholar 

  25. Lowry, O. H.; Rosebrough, N. J.; Farr, A. L., et al. Protein measurement with the Folin phenol reagent. J. Biol. Chem. 193: 265–275; 1951.

    PubMed  CAS  Google Scholar 

  26. Topping, D. L.; Trimble, R. P.; Storer, G. B. O2 dependence of insulin stimulation of glucose uptake by perfused rat liver: effects of carboxyhemoglobin and haematocrit. Horm. Metab. Res. 17: 281–284; 1985.

    Article  PubMed  CAS  Google Scholar 

  27. Sharma, R. J.; Rodrigues, L. M.; Whitton, P. O., et al. Control mechanism in the acceleration of hepatic glycogen degradation during hypoxia. Biochim. Biophys. Acta 630: 414–424; 1980.

    PubMed  CAS  Google Scholar 

  28. Bonney, J. R.; Becker, J. E.; Walker, P. R. et al. Primary monolayer culture of adult rat liver parenchymal cells suitable for study of the regulation of the enzyme synthesis. In Vitro 9: 399–413; 1974.

    Article  CAS  Google Scholar 

  29. Seifter, S.; Englard, S. Energy metabolism. In: Arias, I. M.; Popper, H.; Schachter, D., et al., eds. The Liver: Biology and Pathobiology. New York: Raven Press. 1982: 219–231.

    Google Scholar 

  30. Krebs, H. A.; Woods, H. F.; Alberti, K. G. M. Hyperlactemia and lactic acidosis. Essays Med. Biochem. 1: 81–92; 1975.

    CAS  Google Scholar 

  31. Munck Petersen, C.; Christiansen, B. S.; Heickendorff, L., et al. Synthesis and secretion of 2-macroglobulin by human hepatocytes in culture. Eur. J. Clin. Invest. 18: 543–548; 1988.

    Article  PubMed  CAS  Google Scholar 

  32. Christiansen, B. S.; Ingerslev, J.; Heickendorff, L., et al. Human hepatocytes in culture synthesize and secrete fibronectin. Scand. J. Clin. Lab. Invest. 48: 685–690; 1988.

    PubMed  CAS  Google Scholar 

  33. Gordon, A. H.; Koj, A., eds. The acute phase response to injury and infection. Elsevier. Amsterdam. New York; 1985.

    Google Scholar 

  34. Meier, K. P.; Talke, H.; Gerok, W., Harnstoffzyklusenzyme und Harnstoffsynthese bei chronischen Lebererkrankungen. Intern Ammoniak Symposium. Wien, May 1977. Aminosauren, Ammoniak und hepatische Encephalopathie. Vol 3. Stiittgart-New York: Gustav Fisher Verlag; 1977: 33–45.

    Google Scholar 

  35. Butterworth, B.; Smith-Oliver, T.; Earle, L., et al. Use of primary cultures of human hepatocytes in toxicological studies. Cancer Res. 49: 1075–1084; 1989.

    PubMed  CAS  Google Scholar 

  36. Le Bot, M. A.; Bégué, J. M.; Kernaleguen, J., et al. Different cytotoxicity and metabolism of doxorubicin, daunorubicin, epirubicin, esorubicin and idarubicin in cultured human and rat hepatocytes. Biochem. Pharmacol. 37: 3877–3887; 1988.

    Article  PubMed  Google Scholar 

  37. Berthou, F.; Ratanasavanh, D.; Alix, D., et al. Caffeine and theophylline metabolism in newborn and adult human hepatocytes; comparison with adult rat hepatocytes. Biochem. Pharmacol. 37: 3691–3700; 1988.

    Article  PubMed  CAS  Google Scholar 

  38. Bégué, J. M.; Baffet, G.; Campion, J. P., et al. Differential response of primary cultures of human and rat hepatocytes to aflatoxin B1-induced cytotoxicity and protection by the hepatoprotective agent (+)-cyanidanol-3. Biol. Cell 63: 327–333; 1988.

    Article  PubMed  Google Scholar 

  39. Ratanasavanh, D.; Beaune, P.; Baffet, G., et al. Immunocytochemical evidence for the maintenance of cytochrome P-450 isozymes. NADPH cytochrome C reductase, epoxide hydrolase in pure and mixed primary cultures of adult human hepatocytes. J. Histochem. Cytochem. 4: 527–533; 1986.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gómez-Lechón, M.J., López, P., Donato, T. et al. Culture of human hepatocytes from small surgical liver biopsies. Biochemical characterization and comparison with in vivo. In Vitro Cell Dev Biol 26, 67–74 (1990). https://doi.org/10.1007/BF02624157

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02624157

Key words

Navigation