Skip to main content
Log in

Mechanism of action of the migration stimulating factor produced by fetal and cancer patient fibroblasts: Effect on hyaluronic acid synthesis

  • Regular Papers
  • Published:
In Vitro Cellular & Developmental Biology Aims and scope Submit manuscript

Summary

We have previously demonstrated that confluent fetal fibroblasts migrate into three-dimensional collagen gels to a significantly greater extent than their normal adult counterparts. Recent studies have revealed that this behavioral difference results from the secretion by fetal fibroblasts of a soluble migration-stimulating factor (MSF) which acts on these cells in an autocrine fashion. Adult fibroblasts do not produce MSF but remain responsive to it. Skin fibroblasts from cancer patients resemble fetal fibroblasts (rather than normal adult cells) with respect to their migratory behavior on collagen gels and continued production of MSF. This communication is concerned with elucidating the biochemical basis of MSF activity. Data are presented indicating that a) hyaluronic acid is required for the elevated migratory activity displayed by confluent fetal and breast cancer patient skin fibroblast; b) adult fibroblasts exhibit a bell-shaped dose-response to MSF, with maximal stimulation of migration observed at a concentration of 10 ng/ml; c) the migratory activity of adult fibroblasts pre-incubated with MSF remains high in the absence of additional factor: and d) MSF affects both the quantity and size class distribution of hyaluronic acid synthesized by adult fibroblasts. We have previously speculated that the persistent fetal-like fibroblasts of breast cancer patients play a direct role in disease pathogenesis by perturbing normal epithelial-mesenchymal interactions. The observations reported here suggest that MSF-induced alterations in hyaluronic acid synthesis may contribute to the molecular basis of such perturbations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Antecol, M. H.; Darveau, A.; Sonenberg, N., et al. Altered biochemical properties of actin in normal skin fibroblasts from individuals predisposed to dominantly inherited cancers. Cancer Res. 46:1867–1873; 1986.

    PubMed  CAS  Google Scholar 

  2. Azzarone, B.; Mareel, M.; Billard, C., et al. Abnormal properties of skin fibroblasts from patients with breast cancer. Int. J. Cancer 33:759–764; 1984.

    Article  PubMed  CAS  Google Scholar 

  3. Bertolami, C. N.; Donoff, R. B. Hyaluronidase activity during open wound healing in rabbits. J. Surg. Res. 25:256–259; 1978.

    Article  PubMed  CAS  Google Scholar 

  4. Bissell, M.; Hall, H. G.; Parry, G. How does the extracellular matrix direct gene expression? J. Theor. Biol. 99:31–68; 1982.

    Article  PubMed  CAS  Google Scholar 

  5. Bronson, R. E.; Argenta, J. G.; Bertolami, C. N. Interleukin-1 induced changes in extracellular glycosaminoglycan composition of cutaneous scar-derived fibroblasts in culture. Collagen Relat. Res. 8:199–208; 1988.

    CAS  Google Scholar 

  6. Cappelletti, R.; Del Rosso, M.; Chiarugi, V. Rapid multisample separation of the five most widespread animal glycosaminoglycans. Anal. Biochem. 93:37–40; 1979.

    PubMed  CAS  Google Scholar 

  7. Castellani, P.; Siri, A.; Rosellini, C., et al. Transformed cells release different fibronectin variants than do normal cells. J. Cell Biol. 103:1671–1678; 1986.

    Article  PubMed  CAS  Google Scholar 

  8. Cantrella, M.; McCarthy, T. L.; Canalis, E. Transforming growth factor-beta is a bifunctional regulator of replication and collagen synthesis in osteoblast-enriched cell cultures of fetal rat bone. J. Biol. Chem. 262:2869–2874; 1987.

    Google Scholar 

  9. Chen, T. R. In situ detection of mycoplasma contamination in cell cultures by fluorescent Hoechst 33238 stain. Exp. Cell Res. 104:255–262; 1977.

    Article  PubMed  CAS  Google Scholar 

  10. Clemmons, D. R. Age-dependent production of a competence factor by human fibroblasts. J. Cell. Physiol. 114:61–67; 1983.

    Article  PubMed  CAS  Google Scholar 

  11. Durning, P.; Schor, S. L.; Sellwood, R. A. S. Fibroblasts from patients with breast cancer shop abnormal migratory behaviour in vitro. Lancet I:890–892; 1984.

    Article  Google Scholar 

  12. Elstad, C. A.; Hosick, H. L. Contribution of the extracellular matrix to growth properties of cells from a preneoplastic outgrowth: possible role of hyaluronic acid. Exp. Cell Biol. 55:313–321; 1987.

    PubMed  CAS  Google Scholar 

  13. Feinberg, R. N.; Beebe, D. C. Hyaluronate in vasculogenesis. Science 220:1177–1179; 1983.

    Article  PubMed  CAS  Google Scholar 

  14. Forrester, J. V.; Balazs, E. A. Inhibition of phagocytosis by high molecular weight hyaluronate. Immunology 40:435–446; 1980.

    PubMed  CAS  Google Scholar 

  15. Goldberg, R. L.; Toole, B. P. Hyaluronate inhibition of cell proliferation. Arthritis Rheum. 30:769–777; 1987.

    Article  PubMed  CAS  Google Scholar 

  16. Green, S. J.; Underhill, C. B. Hyaluronate appears to be covalently linked to the cell surface. J. Cell. Physiol. 134:376–386; 1988.

    Article  PubMed  CAS  Google Scholar 

  17. Grey, A. M.; Schor, A. M.; Rushton, G., et al. Purification of the migration stimulating factor produced by fetal and breast cancer patient fibroblasts. Proc. Natl. Acad. Sci. USA 86:2438–2442; 1989.

    Article  PubMed  CAS  Google Scholar 

  18. Haggie, J.; Howell, A.; Sellwood, R. A., et al. Fibroblasts from relatives of patients with hereditary breast cancer show fetal-like behaviourin vitro. Lancet I:1455–1457; 1987.

    Article  Google Scholar 

  19. Ham, R. G. Dermal fibroblasts. In: Methods in cell physiology, vol. 21. Harris, C.; Trump, B. F.; Stoner, G., eds. New York: Academic Press; 1980:255–276.

    Google Scholar 

  20. Hill, D. J.; Strain, A. J.; Elstow, S. F., et al. Bifunctional action of transforming growth factor-beta on DNA synthesis in early passage human fetal fibroblasts. J. Cell. Physiol. 128:322–328; 1986.

    Article  PubMed  CAS  Google Scholar 

  21. Hopwood, J. J.; Dorfman, A. Glycosaminoglycan synthesis by cultured human skin fibroblasts after transformation with simian virus 40. J. Biol. 252:4777–4785; 1977.

    CAS  Google Scholar 

  22. Iozzo, R. V. Neoplastic modulation of the extracellular matrix: colon carcinoma cells release polypeptides that alter proteoglycan metabolism in colon fibroblasts. J. Biol. Chem. 260:7464–7475; 1985.

    PubMed  CAS  Google Scholar 

  23. Knudson, W.; Biswas, C.; Toole, B. P. Interactions between human tumor cells and fibroblasts stimulate hyaluronate synthesis. Proc. Natl. Acad. Sci. USA 81:6767–6771; 1984.

    Article  PubMed  CAS  Google Scholar 

  24. Kujawa, M. J.; Carrino, D. A.; Caplan, A. I. Substrate-bonded hyaluronic acid exhibits a size-dependent stimulation of chondrogenic differentiation of stage 24 limb mesenchymal cells in culture. Dev. Biol. 114:519–528; 1986.

    Article  PubMed  CAS  Google Scholar 

  25. Kujawa, M.; Pechak, D. G.; Fiszman, M. Y., et al. Hyaluronic acid bonded to cell culture surfaces inhibits the program of myogenesis. Dev. Biol. 113:10–16; 1986.

    Article  PubMed  CAS  Google Scholar 

  26. Lacy, B. E.; Underhill, C. B. The hyaluronate receptor is associated with actin filaments. J. Cell Biol. 105:1395–1404; 1987.

    Article  PubMed  CAS  Google Scholar 

  27. Lawrence, D. A.; Pircher, C. K. M.; Jullien, P. Normal embryo fibroblasts release transforming growth factor in latent form. J. Cell. Physiol. 121:184–188; 1984.

    Article  PubMed  CAS  Google Scholar 

  28. Manley, G.; Warren, C. Serum hyaluronic acid in patients with disseminated neoplasm. J. Clin. Pathol. 40:626–630; 1987.

    PubMed  CAS  Google Scholar 

  29. Markwald, R. R.; Fitzharris, T. P.; Bank, H., et al. Structural analysis on the matrical organization of glycosaminoglycans in developing endocardial cushions. Dev. Biol. 62:292–316; 1978.

    Article  PubMed  CAS  Google Scholar 

  30. Matsura, H.; Hakamori, S. I. The oncofetal domain of fibronectin defined by a monoclonal antibody FDC-6: Its presence in fetal and tumor tissues and its absence in those from normal tissue and plasma. Proc. Natl. Acad. Sci. USA 83:6517–6521; 1985.

    Article  Google Scholar 

  31. Matuoka, K.; Mitsui, Y.; Murota, S. I. Growth coupled changes in glycosaminoglycans (heparan sulfate and hyaluronic acid) in normal and transformed human fibroblasts. Cell Biol. Int. Rep. 9:577–586; 1985.

    Article  PubMed  CAS  Google Scholar 

  32. McGuire, P. G.; Castellot, J. J.; Orkin, R. W. Size-dependent hyaluronate degradation by cultured cells. J. Cell. Physiol. 133:267–276; 1987.

    Article  PubMed  CAS  Google Scholar 

  33. Mescher, A. L.; Munaim, S. I. Changes in the extracellular matrix and glycosaminoglycin synthesis during the initiation of regeneration in adult newt forelimbs. Anat. Rec. 214:424–431; 1986.

    Article  PubMed  CAS  Google Scholar 

  34. Mian, N. Analysis of cell growth phase related variations in hyaluronate synthase activity of isolated plasma membrane fractions of cultured human skin fibroblasts. Biochem. J. 237:333–342; 1986.

    PubMed  CAS  Google Scholar 

  35. Nakano, S.; Ts’o, P. O. Cellular differentiation and neoplasia: characterization of subpopulations of cells that have neoplasia-related growth properties in Syrian hamster embryo cell cultures. Proc. Natl. Acad. Sci. USA 78:4995–4999; 1981.

    Article  PubMed  CAS  Google Scholar 

  36. Nigam, V. N.; Brailovsky, C. A.; Bonaventura, J. Glycosaminoglycans and proteoglycans in neoplastic tissues and their role in tumour growth and metastasis. In: Varma, R. S.; Varma, R., eds. Glycosaminoglycans and proteoglycans in Physiological and Pathological Process of Body Systems. Basel: Karger Press; 1982:354–371.

    Google Scholar 

  37. Orkin, R. W.; Toole, B. P. Hyaluronidase activity and hyaluronate content of the developing chick embryo heart. Dev. Biol. 66:308–320; 1978.

    Article  PubMed  CAS  Google Scholar 

  38. Parker, R. E. Introductory statistics for biology, 2nd ed. London: Edward Arnold; 1979.

    Google Scholar 

  39. Pfeffer, L.; Lipkin, M.; Stutman, O., et al. Growth abnormalities of cultured skin fibroblasts derived from individuals with hereditary adenomatosis of the colon and rectum. J. Cell. Physiol. 89:29–38; 1976.

    Article  PubMed  CAS  Google Scholar 

  40. Pintar, J. E. Distribution and synthesis of glycosaminoglycans during quail neural crest morphogenesis. Dev. Biol. 67:444–464; 1978.

    Article  PubMed  CAS  Google Scholar 

  41. Pratt, R. M.; Larsen, M. A.; Johnston, M.C. Migration of cranial neural crest cells in a cell-free hyaluronate-rich matrix. Dev. Biol. 44:298–305; 1975.

    Article  PubMed  CAS  Google Scholar 

  42. Schachtschabel, D. O.; Sluke, G. Increase of cellular hyaluronic acid synthesis following continuous exposure of cultured human fibroblasts (WI-38) to hydrocortisone. Z. Gerontol. 19:173–178; 1986.

    PubMed  CAS  Google Scholar 

  43. Schor, S. L. Cell proliferation and migration within three-dimensional collagen gels. J. Cell Sci. 41:159–175; 1980.

    PubMed  CAS  Google Scholar 

  44. Schor, S. L.; Court, J. Different mechanisms involved in the attachment of cells to native and denatured collagen. J. Cell Sci. 38:267–281; 1979.

    PubMed  CAS  Google Scholar 

  45. Schor, S. L.; Schor, A. M. Foetal-to-adult transitions in fibroblast phenotype: their possible relevance to the pathogenesis of cancer. J. Cell Sci. Suppl. 8:165–180; 1987.

    PubMed  CAS  Google Scholar 

  46. Schor, S. L.; Schor, A. M. Clonal heterogeneity in fibroblast phenotype: implications for the control of epithelial-mesenchymal interactions. BioEssays 7:200–204; 1987.

    Article  PubMed  CAS  Google Scholar 

  47. Schor, S. L.; Schor, A. M.; Rushton, G., et al. Adult, foetal and transformed fibroblasts display different migratory phenotypes on collagen gels: evidence for an isoformic transition during foetal development. J. Cell Sci. 73:221–234; 1985.

    PubMed  CAS  Google Scholar 

  48. Schor, S. L.; Schor, A. M.; Durning, P., et al. Skin fibroblasts obtained from cancer patients display foetal-like behaviour on collagen gels. J. Cell Sci. 73:235–244; 1985.

    PubMed  CAS  Google Scholar 

  49. Schor, S. L.; Haggie, J. A.; Durning, P., et al. Occurrence of a fetal fibroblast phenotype in familial breast cancer. Int. J. Cancer 37:831–836; 1986.

    Article  PubMed  CAS  Google Scholar 

  50. Schor, S. L.; Schor, A. M.; Howell, A., et al. Hypothesis: Persistent expression of fetal phenotypic characteristics by fibroblasts is associated with an increased susceptibility to neoplastic disease. Exp. Cell Biol. 55:11–17; 1987.

    PubMed  CAS  Google Scholar 

  51. Schor, S. L.; Schor, A. M.; Grey, A. M., et al. Foetal and cancer patient fibroblasts produce an autocrine migration stimulating factor not made by normal adult cells. J. Cell Sci. 90:391–399; 1988.

    PubMed  CAS  Google Scholar 

  52. Shimada, E.; Matasumura, G. Degradative processes of hyaluronic acid by Streptomyces hyaluronidase. J. Biochem. 88:1015–1023; 1978.

    Google Scholar 

  53. Smith, G. N.; Toole, B. P.; Gross, J. Hyaluronidase activity and glycosaminoglycan synthesis in the amputated newt limb. Dev. Biol. 42:221–232; 1975.

    Article  Google Scholar 

  54. Toole, B. P.; Biswas, C.; Gross, J. Hyaluronate and invasiveness of the rabbit V2 carcinoma. Proc. Natl. Acad. Sci. USA 76:6299–6303; 1979.

    Article  PubMed  CAS  Google Scholar 

  55. Toole, B. P.; Tresltad, R. L. Hyaluronate production and removal during corneal development in the chick. Dev. Biol. 26:28–35; 1971.

    Article  PubMed  CAS  Google Scholar 

  56. Turley, E. A.; Torrance, J. Localization of hyaluronate and hyaluronate-binding protein on motile and non-motile fibroblasts. Exp. Cell Res.161:17–28; 1984.

    Article  Google Scholar 

  57. Turley, E. A.; Bowman, P.; Kytryk, M. A. Effects of hyaluronate and hyaluronate-binding proteins on cell motile and contact behavior. J. Cell Sci. 78:133–145; 1985.

    PubMed  CAS  Google Scholar 

  58. Turley, E. A.; Hollenberg, M. D.; Pratt, R. M. Effects of epidermal growth factor/urogastrone on glycosaminoglycan synthesis and accumulation in vitro in the developing mouse palate. Differentiation 28:279–285; 1985.

    Article  PubMed  CAS  Google Scholar 

  59. Welch, D. W.; Roberts, R. M. Complex saccharide metabolism in cystic fibrosis. Pediatr. Res. 9:698–702; 1975.

    Article  PubMed  CAS  Google Scholar 

  60. Weigel, P. H.; Fuller, G. M.; LeBoeuf, R. D. A model for the role of hyaluronic acid and fibrin in the early events during the inflammatory response and wound healing. J. Theor. Biol. 119:219–234; 1986.

    Article  PubMed  CAS  Google Scholar 

  61. West, D. C.; Hampson, I. N.; Arnold, F., et al. Angiogenesis induced by degradation products of hyaluronic acid. Science 228:1324–1326; 1985.

    Article  PubMed  CAS  Google Scholar 

  62. Yamagata, T.; Saito, H.; Habuchi, O., et al. Purification and properties of bacterial chondroitinases and chondrosculfatases. J. Biol. Chem. 243:1523–1535; 1968.

    PubMed  CAS  Google Scholar 

  63. Yoneda, M.; Yamagata, M.; Suzuki, S., et al. Hyaluronic acid modulates proliferation of mouse dermal fibroblasts in culture. J. Cell Sci. 90:265–273; 1988.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

This work was funded by grants from the Cancer Research Campaign (CRC) and Medical Research Council (MRC), London, England.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Schor, S.L., Schor, A.M., Grey, A.M. et al. Mechanism of action of the migration stimulating factor produced by fetal and cancer patient fibroblasts: Effect on hyaluronic acid synthesis. In Vitro Cell Dev Biol 25, 737–746 (1989). https://doi.org/10.1007/BF02623727

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02623727

Key words

Navigation