Skip to main content
Log in

Regulation of glucocorticoid receptors and Na−K ATPase activity by hydrocortisone in proximal tubular epithelial cells

  • Regular Papers
  • Published:
In Vitro Cellular & Developmental Biology Aims and scope Submit manuscript

Summary

The effect of hydrocortisone (HC) in modulating glucocorticoid receptors (GR) and sodium-potassium adenosine triphosphatase (Na−K ATPase) activity was studied in primary cultures of immunoisolated murine proximal tubular epithelial cells (PTEC). Utilizing monoclonal antibody against stage-specific embryonic antigen-1, a homogeneous population of PTEC was obtained in high yield. The cells were cultured to confluence and further treated for 48 h in serum-free growth medium containing no HC (control); 50 nM HC; or 50 nM HC plus 20 nM of the antiglucocorticoid, RU 38486. PTEC treated with 50 nM HC had 56% of GR binding and 160% Na−K ATPase activity as compared to controls (P<0.01). GR binding was abolished by incubation in RU 38486 whereas Na−K ATPase fell below control values (P<0.05). Brief incubations of HC-treated PTEC with 0.5 mM ouabain resulted in a fall in GR binding without a change in Na−K ATPase activity. These data indicate that in PTEC, HC regulates GR binding and they suggest that stimulation of Na−K ATPase activity is a direct biological response to this receptor-hormone interaction. Thus, primary cultures of immunoaffinity-isolated PTEC offer a good model system for investigating the molecular basis underlying the regulation of GR binding and postreceptor events influenced by glucocorticoids.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Beauwens, R.; Crabbe, J. Biochemistry of hormone action. In: Kinne, R. K. H., ed. Renal biochemistry, New York: Elsevier; 1985; 308–315.

    Google Scholar 

  2. Jorgensen, P. L. Structure, function, and regulation of Na−K ATPase in the kidney. Kidney Int. 29:10–20; 1986.

    PubMed  CAS  Google Scholar 

  3. Aperia, A.; Larsson, L.; Zetterstrom, R. Hormonal induction of Na−K ATPase in developing proximal tubular cells. Am. J. Physiol. 241:F356-F360; 1981.

    PubMed  CAS  Google Scholar 

  4. Igarashi, Y.; Aperia, A.; Larsson, L., et al. Effect of beta-methasone on Na−K-ATPase activity and basal and lateral cell membranes in proximal tubular cells during early development. Am. J. Physiol. 244:F232-F237; 1983.

    Google Scholar 

  5. Chignell, C. F.; Titus, E. Effect of adrenal steroids on Na+ and K+ requiring adenosine triphosphatase from rat kidney. J. Biol. Chem. 241:5083–5089; 1966.

    PubMed  CAS  Google Scholar 

  6. Landon, E. J.; Jazab, N.; Forte, L. Aldosterone and sodium-potassium-dependent ATPase activity of rat kidney membranes. Am. J. Physiol. 211:1050–1056; 1966.

    PubMed  CAS  Google Scholar 

  7. Katz, A. I.; Epstein, F. H. The rate of Na+−K+ ATPase in the reabsorption of sodium by the kidney. J. Clin. Invest. 46:1999–2011; 1967.

    PubMed  CAS  Google Scholar 

  8. Hendler, E. O.; Torretti, J.; Kupor, L., et al. Effects of adrenalectomy and hormone replacement on Na+−K+ ATPase in renal tissue. Am. J. Physiol. 222:754–760; 1972.

    PubMed  CAS  Google Scholar 

  9. Charney, A. N.; Silva, P.; Besarab, A., et al. Separate effects of aldosterome, DOCA, and methyl-prednisolone on renal Na−K-ATPase. Am. J. Physiol. 227:345–350; 1974.

    PubMed  CAS  Google Scholar 

  10. Fisher, H. S.; Welt, L. G.; Hayslett, J. P. Dissociation of Na+−K+ ATPase specific activity and net reabsorption of sodium. Am. J. Physiol. 228:1745–1749; 1975.

    PubMed  CAS  Google Scholar 

  11. Rodriguez, H. J.; Sinha, S. K.; Starling, J., et al. Regulation of renal Na+−K+-ATPase in the rat by adrenal steroids. Am. J. Physiol. 241:F186-F195; 1981.

    PubMed  CAS  Google Scholar 

  12. Sinha, J. K.; Rodriguez, H. J.; Hogan, W. C., et al. Mechanisms of activation of renal (Na+−K+) ATPase in rat. Effects of acute and chronic administration of dexamethasone. Biochem. Biophys. Acta 641:20–35; 1981.

    Article  PubMed  CAS  Google Scholar 

  13. Petty, K. J.; Kokko, J. P.; Marver, D., Secondary effect of aldosterone on Na−K ATPase activity in the rabbit cortical collecting tubule. J. Clin. Invest. 68:1514–1521; 1981.

    PubMed  CAS  Google Scholar 

  14. Mujais, S. K.; Chekal, M. A.; Jones, W. J., et al. Regulation of renal Na−K ATPase in the rat. Role of natural mineralo and glucocorticoid hormones. J. Clin. Invest. 73:13–19; 1984.

    Article  PubMed  CAS  Google Scholar 

  15. Rayson, B. M.; Lowther, S. O. Steroid regulation of Na+−K+ ATPase: differential sensitivities along with the nephron. Am. J. Physiol. 246:F656-F662; 1984.

    PubMed  CAS  Google Scholar 

  16. Katz, A. I. Distribution and function of classes of ATPase along the nephron. Kidney Int. 29:21–31; 1986.

    PubMed  CAS  Google Scholar 

  17. Marver, D. Evidence of corticosteroid action along the nephron. Am. J. Physiol. 245:F111-F123; 1984.

    Google Scholar 

  18. Lee, S.-M. K.; Chekal, M. A.; Katz, A. I. Corticosterone binding sites along the rat nephron. Am. J. Physiol. 244:F504-F509; 1983.

    PubMed  CAS  Google Scholar 

  19. Farman, N.; Vandewalle, A.; Bonvalet, J. P. Autoradiographic determination of dexamethasone binding sites along the rabbit nephron. Am. J. Physiol. 244:F325-F344; 1983.

    PubMed  CAS  Google Scholar 

  20. Ellis, D.; Sothi, T. D.; Avner, E. D. Glucocorticoids modulate renal glucocorticoid receptors and Na−K ATPase activity. Kidney Int. 32:464–471; 1987.

    PubMed  CAS  Google Scholar 

  21. Bander, N. H. Monoclonal antibodies. State of the art. J. Urol. 137:603–612; 1987.

    PubMed  CAS  Google Scholar 

  22. Ballou, B.; Jaffe, R.; Taylor, R. J., et al. Tumor radioimmunolocation: differential antibody retention by antigenic normal tissue and tumor. J. Immunol. 132:2111–2116; 1984.

    PubMed  CAS  Google Scholar 

  23. Solter, D.; Knowles, B. B. Monoclonal antibody defining a stage-specific mouse embryonic antigen (SSEA-1). Proc. Natl. Acad. Sci. USA 75:5565–5569; 1978.

    Article  PubMed  CAS  Google Scholar 

  24. Fox, N.; Shevinsky, L.; Knowles, B. B., et al. Distribution of murine stage-specific embryonic antigens in the kidneys of three rodent species. Exp. Cell Res. 140:331–339; 1982.

    Article  PubMed  CAS  Google Scholar 

  25. Jaffe, R.; Bender, B.; Santamaria, M., et al. Segmental staining of the murine nephron by monoclonal antibodies directed against the GP-2 sub-unit of laminin. Lab. Invest. 51:88–96; 1984.

    PubMed  CAS  Google Scholar 

  26. Stanton, R. C.; Mendrick, D. L.; Rennke, H. G., et al. Use of monoclonal antibodies to culture rat proximal tubule cells. Am. J. Physiol. 251:C780-C786; 1986.

    PubMed  CAS  Google Scholar 

  27. Taub, M.; Sato, G. Growth of kidney epithelial cells in hormone supplemented, serum-free medium. J. Supramol. Struct. 11:207–216; 1979.

    Article  PubMed  CAS  Google Scholar 

  28. Guder, W. G.; Ross, B. D. Enzyme distribution along the nephron. Kidney Int. 26:101–111; 1984.

    PubMed  CAS  Google Scholar 

  29. Vinuela, E.; Salas, M.; Sols, A. Glucokinase and hexokinase in liver in relation to glycogen synthesis. J. Biol. Chem. 238:1175–1176; 1963.

    PubMed  CAS  Google Scholar 

  30. Tate, S. S.; Meister, A. Interaction of γ-glutamyl transpeptidase with amino acids, dipeptides and derivatives and analogs of glutathione. J. Biol. Chem. 249:7593–7602; 1974.

    PubMed  CAS  Google Scholar 

  31. Nordling, S.; Silja, A. Fluorimetric microassay of DNA using a modified thiobarbituric acid assay. Anal. Biochem. 115:260–266; 1981.

    Article  PubMed  CAS  Google Scholar 

  32. Lowry, O. H.; Rosenbrough, N. J.; Farr, A. L. Protein measurement with the folin phenol reagent. J. Biol. Chem. 193:265–275; 1951.

    PubMed  CAS  Google Scholar 

  33. Tsao, B.; Curthoys, N. P. The absolute asymmetry of orientation of γ-glutamyltranspeptidase and aminopeptidase on the external surface of the rat renal brush border membrane. J. Biol. Chem. 255:7708–7711; 1980.

    PubMed  CAS  Google Scholar 

  34. Currie, M. G.; Cole, B. R.; Deschryver-Kecskemeti, K., et al. Cell culture of renal epithelium derived from rabbit microdissected cortical collecting tubules. Am. J. Physiol. 244(13):F724-F728; 1983.

    PubMed  CAS  Google Scholar 

  35. Horster, M. Primary culture of mammalian nephron epithelia. Requirements for cell outgrowth and proliferation from defined explanted nephron segments. Pflugers Arch 382:209–215; 1979.

    Article  PubMed  CAS  Google Scholar 

  36. Wilson, P. D.; Dillingham, M. A.; Breckon, R., et al. Defined human renal tubular epithelia in culture: growth, characterization, and hormonal response. Am. J. Physiol. 248(17):F436-F443; 1985.

    PubMed  CAS  Google Scholar 

  37. Wilson, P. D.; Horster, M. Differential response to hormones of defined distal nephron epithelia in culture. Am. J. Physiol. 244(13):C166-C174; 1983.

    PubMed  CAS  Google Scholar 

  38. Soon, D. C.; Alavi, N.; Livingston, D., et al. Characterization of the primary rabbit kidney cultures that express proximal tubule functions in a hormonally defined medium. J. Cell Biol. 95:118–126; 1982.

    Article  Google Scholar 

  39. Schmidt, U.; Marosvari, J.; Dubach, U. C. Renal metabolism of glucose: anatomical sites of hexokinase activity in the rat renal nephron. FEBS Lett. 53:26–28; 1975.

    Article  PubMed  CAS  Google Scholar 

  40. Capraro, M. A.; Hughey, R. P. Use of acivicin in the determination of rate constants for turnover of rat renal γ-glutamyltranspeptidase. J. Biol. Chem. 260:3408–3412; 1985.

    PubMed  CAS  Google Scholar 

  41. Moguilewsky, M.; Philibert, D. RU 38486: Potent antiglucocorticoid activity correlated with strong binding to the cytosolic glucocorticoid receptor followed by an impaired activation. J. Steroid Biochem. 20:271–276; 1984.

    Article  PubMed  CAS  Google Scholar 

  42. Lazar, G.; Agarwal, M. K. Physiological action and receptor binding of a newly synthesized and novel antiglucocorticoid. Biochem. Biophys. Res. Commun. 134:44–50; 1986.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ellis, D., Sothi, T.D., Curthoys, N.P. et al. Regulation of glucocorticoid receptors and Na−K ATPase activity by hydrocortisone in proximal tubular epithelial cells. In Vitro Cell Dev Biol 24, 811–816 (1988). https://doi.org/10.1007/BF02623652

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02623652

Key words

Navigation