Skip to main content
Log in

Microvascular endothelium and pericytes: High yield, low passage cultures

  • Published:
In Vitro Cellular & Developmental Biology Aims and scope Submit manuscript

Summary

Cultured microvascular endothelial cells (MEC) have become a valuable model for studies of microvascular physiology and pathology. Most current techniques involve manual removal of undesirable cell types or cloning, require one to several months, and yield high population doubling level cultures derived from a relatively small sample of the original population. We have devised a technique to more rapidly produce larger numbers of MEC. This method provided primary cultures consisting predominantly of MEC within 1 wk. The technique involves selective aspiration of gray matter from the bovine cerebral cortex followed by homogenization, sieving, enzymatic dissociation, and then dense plating (104 to 105 vessel fragments/cm2) onto gelatin- or fibronectin-coated plastic. Typical yields were 0.1 to 0.5 × 106 fragments/g of aspirated gray matter. The optimal culture medium for these cells was 15% equine plasma derived serum, 20% conditioned medium, 2% retinal extract, 60% fresh medium, and 500 μg/ml heparin. Cells attached within 24 h, well-spread colonies were present within 1 to 2 d, and cultures approached confluence within 2 to 3 d. Alkaline phosphatase staining confirmed the microvascular origin of the material plated. Morphology, Factor VIII-related antigen staining and 1,1′-dioctacecyl-3,3,3′3,-tetramethyl-indocarbocyanine perchlorate acetylated low density lipoprotein uptake suggested that MEC predominated. Cultures could be passaged and additionally purified by sequential exposure to pancreatin and trypsin-EDTA. Pancreatin selectively removed MEC colonies leaving a relatively homogeneous pericyte population. The relative ease with which such cultures can be produced should facilitate the in vitro study of brain microvascular function and may also provide insights useful for growing MEC from other vascular beds.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Albert, Z.; Orlowski, M.; Rzucidlo, Z., et al. Studies on gammaglutamyl transpeptidase activity and its histochemical localization in the central nervous system. Acta Histochem. 25:312–320; 1966.

    PubMed  CAS  Google Scholar 

  2. Azizkhan, R. G.; Azizkhan, J. C.; Zetter, B. R., et al. Mast cell heparin stimulates migration of capillary endothelial cellsin vitro. J. Exp. Med. 152:931–944; 1980.

    Article  PubMed  CAS  Google Scholar 

  3. Bar, R. S.; Peacock, M. L.; Spanheimer, R. G., et al. Differential binding of insulin to human arterial and venous endothelial cells in primary culture. Diabetes 29:991–995; 1980.

    Article  PubMed  CAS  Google Scholar 

  4. Bertler, A.; Falck, C.; Owman, C. H., et al. The localization of monoaminergic blood-brain barrier mechanisms. Pharmacol. Rev. 18:369–385; 1966.

    PubMed  CAS  Google Scholar 

  5. Bowman, P. D.; Betz, A. L.; Ar, D., et al. Primary culture of capillary endothelium from rat brain. In Vitro 17:353–362; 1981.

    Article  PubMed  CAS  Google Scholar 

  6. Bowman, P. D.; Betz, A. L.; Goldstein, G. W. Primary culture of microvascular endothelial cells from bovine retina: selective growth using fibronectin coated substrate and plasma derived serum. In Vitro 18:626–632; 1982.

    PubMed  CAS  Google Scholar 

  7. Buzney, S. M.; Massicote, S. J. Retinal vessels: proliferation of endothelium in vitro. Invest. Ophthalmol. Vis. Sci. 18:1191–1195; 1979.

    PubMed  CAS  Google Scholar 

  8. Buzney, S. M.; Massicotte, S. J.; Hetu, N., et al. Retinal vascular endothelial cells and pericytes. Differential growth characteristics in vitro. Invest. Ophthalmol. Vis. Sci. 24:470–480; 1983.

    PubMed  CAS  Google Scholar 

  9. Castellot, J. J., Jr.; Addonizio, M. L.; Rosenberg, R., et al. Cultured endothelial cells produce a heparinlike inhibitor of smooth muscle cell growth. J. Cell Biol. 90:372–379; 1981.

    Article  PubMed  CAS  Google Scholar 

  10. Coughlin, S. R.; Moskowitz, M. A.; Zetter, B. R., et al. Platelet-dependent stimulation of prostacyclin synthesis by platelet-derived growth factor. Nature 288:600–602; 1980.

    Article  PubMed  CAS  Google Scholar 

  11. Dankberg, F. L.; Persidsky, M. D. A test of membrane integrity and phagocytic function of granulocytes. Cryobiology 13:430–432; 1976.

    Article  PubMed  CAS  Google Scholar 

  12. Davies, P.; Ross, R. Mediation of pinocytosis in cultured arterial smooth muscle and endothelial cells by platelet-derived growth factor. J. Cell Biol. 79:663–671; 1978.

    Article  PubMed  CAS  Google Scholar 

  13. Davison, P.; Bensch, K.; Karasek, M. A. Isolation and growth of endothelial cells from the microvessels of the newborn human foreskin in cell culture. J. Invest. Dermatol. 75:316–321; 1980.

    Article  PubMed  CAS  Google Scholar 

  14. Davison, P. M.; Karasek, M. A. Human dermal microvascular endothelial cells in vitro: effect of cyclic AMP on cellular morphology and proliferation rate. J. Cell Physiol. 106:253–258; 1981.

    Article  PubMed  CAS  Google Scholar 

  15. Davison, P.; Bensch, K.; Karasek, M. A. Isolation and long-term serial cultivation of endothelial cells from the microvessels of the adult human dermis. In Vitro 19:937–945; 1983.

    PubMed  CAS  Google Scholar 

  16. DeBault, L. E.; Kahn, L. E.; Frommes, S. P., et al. Cerebral microvessels and derived cells in tissue culture: isolation and preliminary characterization. In Vitro 15:473–487; 1979.

    Article  PubMed  CAS  Google Scholar 

  17. DeBault, L. E.; Henriquez, E.; Hart, M. N., et al. Cerebral microvessels and derived cells in tissue culture: II. Establishment, identification, and preliminary characterization of an endothelial cell line. In Vitro 17:480–494; 1981.

    PubMed  CAS  Google Scholar 

  18. Del Vecchio, P. J.; Ryan, U. S.; Ryan, J. W. Isolation of capillary segments from rat adrenal gland. J. Cell Biol. 73:73a; 1977.

    Google Scholar 

  19. Diglio, C. A.; Grammas, P.; Giacamelli, F., et al. Primary culture of rat cerebral microvascular endothelial cells. Lab. Invest. 46:554–563; 1982.

    PubMed  CAS  Google Scholar 

  20. Disbrey, B. D.; Rack, J. H. Histological laboratory methods. London: E. and S. Livingstone; 1970:352–353.

    Google Scholar 

  21. Duthu, G. S.; Smith, J. R.In vitro proliferation and lifespan of bovine aorta endothelial cells: Effect of culture conditions and fibroblast growth factor. J. Cellular Physiol. 103:385–392; 1980.

    Article  CAS  Google Scholar 

  22. Folkman, J.; Haudenschild, C. C.; Zetter, B. R. Long-term culture of capillary endothelial cells. Proc. Natl. Acad. Sci. USA 76:5217–5221; 1979.

    Article  PubMed  CAS  Google Scholar 

  23. Folkman, J.; Haudenschild, C. Angiogenesisin vitro. Nature 288:551–556; 1980.

    Article  PubMed  CAS  Google Scholar 

  24. Frank, R. N.; Kinsey, V. E.; Frank, K. W., et al. Proliferation of endothelial cells from kiten retinal capillaries. Invest. Ophthalmol. Vis. Sci. 18:1195–1200; 1979.

    PubMed  CAS  Google Scholar 

  25. Gajdusek, C.; Dicorleto, P.; Ross, R., et al. An endothelial cell derived growth factor. J. Cell Biol. 85:467–472; 1980.

    Article  PubMed  CAS  Google Scholar 

  26. Gajdusek, C.; Dicorleto, P.; Ross, R., et al. Technique for cloning bovine aortic endothelial cells. In Vitro 19:394–402; 1983.

    Article  PubMed  CAS  Google Scholar 

  27. Gilchrest, B. A.; Nemore, R. E.; Maciag, T. Growth of human keratinocytes on fibronectin-coated plates. Cell Biol. Int. Rep. 4:1009–1016; 1980.

    Article  PubMed  CAS  Google Scholar 

  28. Gimbrone, M. A., Jr.; Cotran, R. S.; Folkman, J. Human vascular endothelial cells in culture: growth and DNA synthesis. J. Cell Biol. 60:673–684; 1974.

    Article  PubMed  CAS  Google Scholar 

  29. Gimbrone, M. A., Jr. Culture of vascular endothelium. In: Spaet, T. H., ed. Progress in hemostasis, vol. 3. New York: Grune and Stratton; 1976:1–28.

    Google Scholar 

  30. Gitlin, J. D.; D'Amore, P. D. Culture of retinal capillary cells using selective growth media. Microvasc. Res. 26:74–80; 1983.

    Article  PubMed  CAS  Google Scholar 

  31. Glaser, B. M.; D'Amore, P. D.; Michels, R. G., et al. Demonstration of vasoproliferative activity from mammalian retina. J. Cell Biol. 84:298–304; 1980.

    Article  PubMed  CAS  Google Scholar 

  32. Goldsmith, J. C.; McCormick, J. J.; Yen, A. Endothelial cell cycle kinetics. Changes in culture and correlation with endothelial properties. Lab Invest. 51:643–647; 1984.

    PubMed  CAS  Google Scholar 

  33. Gomori, G. Microtechnical demonstration of phosphatase in tissue sections. Proc. Soc. Exp. Biol. Med. 42:23–26; 1939.

    CAS  Google Scholar 

  34. Haudenschild, C. C.; Zahniser, D.; Folkman, J., et al. Human vascular endothelial cells in culture. Lack of response to serum growth factor. Exp. Cell Res. 98:175–183; 1976.

    Article  PubMed  CAS  Google Scholar 

  35. Jaffe, E. A.; Nachman, R. L.; Becker, C. G., et al. Culture of human endothelial cells derived from umbilical veins. J. Clin. Invest. 52:2745–2756; 1973.

    PubMed  CAS  Google Scholar 

  36. Johnson, A. R. Human pulmonary endothelial cells in culture: activities of cells from arteries and cells from veins. J. Clin. Invest. 65:841–849; 1980.

    Article  PubMed  CAS  Google Scholar 

  37. Karasek, M.; Charlton, M. Isolation and growth of skin endothelial cells in cell culture. J. Invest. Dermatol. 62:542a; 1974.

    Google Scholar 

  38. Luft, J. H. Improvements in epoxy resin embedding methods. J. Biophys. Biochem. Cytol. 9:409–414; 1961.

    Article  PubMed  CAS  Google Scholar 

  39. Maciag, T.; Cerundolo, J.; Ilsley, S., et al. An endothelial cell growth factor from bovine hypothalamus: identification and partial characterization. Proc. Natl. Acad. Sci. USA 76:5674–5678; 1979.

    Article  PubMed  CAS  Google Scholar 

  40. Maciag, T.; Hoover, G. A.; Stemmerman, M. B., et al. Serial propagation of human endothelial cells in vitro. J. Cell Biol. 91:420–426; 1981.

    Article  PubMed  CAS  Google Scholar 

  41. Madri, J. A.; Williams, S. K.; Wyatt, T., et al. Capillary endothelial cell cultures: phenotypic modulation by matrix components. J. Cell Biol. 97:153–165; 1983.

    Article  PubMed  CAS  Google Scholar 

  42. McDowell, E. M.; Trump, B. F. Histologic fixative suitable in diagnostic light and electron microscopy. Arch. Pathol. Lab. Med. 100:405–414; 1976.

    PubMed  CAS  Google Scholar 

  43. Mori, Y.; Tanigaki, Y.; Shinkai, K., et al. Correlation of alkaline phosphatase activity with cell population density culture cells originated from rat liver. Eur. J. Cell Biol. 26:255–258; 1982.

    PubMed  CAS  Google Scholar 

  44. Panula, P.; Joo, F.; Rechardt, L. Evidence for the presence of viable endothelial cells in culture derived from dissociated rat brain. Experientia 34:95–97; 1978.

    Article  PubMed  CAS  Google Scholar 

  45. Phillips, H. J. Dye exclusion tests for cell viability. In: Kruse, P. F., Jr.; Patterson, M. K., Jr., eds. Tissue culture methods and applications. Academic Press; 1973:406–408.

  46. Phillips, P.; Kumar, P.; Kumar, S., et al. Isolation and characterization of endothelial cells from rat and cow brain white matter. J. Anat. 129:261–272; 1979.

    PubMed  CAS  Google Scholar 

  47. Renkawek, K.; Murray, M. R.; Spatz, M., et al. Distinctive histochemical characteristics of brain capillaries in organiotypic culture. Exp. Neurol. 50:194–206; 1976.

    Article  PubMed  CAS  Google Scholar 

  48. Ross, R. Smooth muscle cell. II. Growth of smooth muscle in culture and formation of elastic fibers. J. Cell Biol. 50:172–186; 1971.

    Article  PubMed  CAS  Google Scholar 

  49. Ross, R.; Glomset, J.; Kariya, B., et al. A platelet-dependent serum factor that stimulates the proliferation of arterial smooth muscle cellsin vitro. Proc. Natl. Acad. Sci. USA 71:1207–1210; 1974.

    Article  PubMed  CAS  Google Scholar 

  50. Ross, R.; Nist, C.; Kariya, B., et al. Physiological quiescence in plasma-drived serum: influence of platelet-derived growth factor on cell growth in culture. J. Cell Physiol. 97:497–508; 1978.

    Article  PubMed  CAS  Google Scholar 

  51. Rutherford, R. B.; Ross, R. Platelet factors stimulate fibroblasts and smooth muscle cells quiescent in plasma serum to proliferate. J. Cell Biol. 69:196–203; 1976.

    Article  PubMed  CAS  Google Scholar 

  52. Sage, H.; Pritzl, P.; Bornstein, P. Secretory phenotypes of endothelial cells in culture: comparison of aortic, venous, capillary and corneal endothelium. Arteriosclerosis 1:427–442; 1981.

    PubMed  CAS  Google Scholar 

  53. Sherer, G. K.; LeRoy, E. C. Cultivation of microvascular endothelial cells from human preputial skin. J. Cell Biol. 79:69a; 1978.

    Google Scholar 

  54. Sherer, G. K.; Fitzharris, T. P.; Faulk, W. P., et al. Cultivation of endothelial cells from human preputial skin. In Vitro 16:675–681; 1980.

    Article  PubMed  CAS  Google Scholar 

  55. Simionescu, M.; Simionescu, N. Isolation and characterization of endothelial cells from the heart microvasculature. Microvasc. Res. 16:426–452; 1978.

    Article  PubMed  CAS  Google Scholar 

  56. Spatz, M.; Bembry, J.; Dodson, R. F., et al. Endothelial cell cultures derived from isolated cerebral microvessels. Brain Res. 191:577–582; 1980.

    Article  PubMed  CAS  Google Scholar 

  57. Takasugi, M. An improved fluorochromatic cytotoxic test. Transplantation 12:148–151; 1971.

    Article  PubMed  CAS  Google Scholar 

  58. Thorgeirsson, G.; Robertson, A. L., Jr. Platelet factors and the human vascular wall. Variations in growth response between endothelial and medial smooth muscle cells. Atherosclerosis 30:67–78; 1978.

    Article  PubMed  CAS  Google Scholar 

  59. Thornton, S. C.; Mueller, S. N.; Levine, E. M. Human endothelial cells: use of heparin in cloning and long term serial cultivation. Science 222:623–625; 1983.

    Article  PubMed  CAS  Google Scholar 

  60. Voyta, J. C.; Via, D. P.; Butterfield, C. E., et al. Identification and isolation of endothelial cells based on their increased uptake of acetylated-low density lipoprotein. J. Cell Biol. 99:2034–2040; 1984.

    Article  PubMed  CAS  Google Scholar 

  61. Wagner, R. C.; Matthews, M. A. The isolation and culture of capillary endothelial cells from epididynaml fat pad. Microvasc. Res. 10:286–297; 1975.

    Article  PubMed  CAS  Google Scholar 

  62. Wall, R. T.; Harker, L. A.; Quadracci, L. J., et al. Factors influencing endothelial cell proliferationin vitro. J. Cell Physiol. 96:203–214; 1978.

    Article  PubMed  CAS  Google Scholar 

  63. Williams, C.; Astaldi, G. C. B.; DeGroot, P. G., et al. Media conditioned by cultured human vascular endothelial cells inhibit the growth of vascular smooth muscle cells. Exp. Cell. Res. 139:191–197; 1982.

    Article  Google Scholar 

  64. Wolff, J. R. Ultrastructure of the terminal vascular bed as related to function. In: Kaley, G.; Altura, B. M., eds. Microcirculation, vol. 1. Baltimore: University Park Press; 1977:95–130.

    Google Scholar 

  65. Zetter, B. R. Migration of capillary endothelial cells is stimulated by tumor-derived factors. Nature 285:41–43; 1980.

    Article  PubMed  CAS  Google Scholar 

  66. Zetter, B. R. The endothelial cells of large and small blood vessels. Diabetes 30(Suppl. 2):24–28; 1981.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

This work was supported by grants from the Hubert H. Humphrey Cancer Research Center, Boston University School of Medicine (American Cancer Soc. IN97G) and from the National Institutes of Health (HL26895 and HL07224), Bethesda, MD.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Carson, M.P., Haudenschild, C.C. Microvascular endothelium and pericytes: High yield, low passage cultures. In Vitro Cell Dev Biol 22, 344–354 (1986). https://doi.org/10.1007/BF02623409

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02623409

Key words

Navigation