Skip to main content
Log in

Use of a low-speed, iso-density percoll centrifugation method to increase the viability of isolated rat hepatocyte preparations

  • Invited Review
  • Published:
In Vitro Cellular & Developmental Biology Aims and scope Submit manuscript

Summary

A simple yet effective method (iso-density percoll centrifugation) has been developed for consistently preparing isolated rat liver parenchymal cells with over 98% initial viability. The method has been applied to cells isolated by a variety of collagenase digestion techniques. This procedure involves the low-speed centrifugation (50 ×g) of the initial cell suspension through a percoll medium having a density of 1.06 g/ml and results in the separation of single and viable parenchymal cells from cell aggregates, debris, and nonparenchymal cells. The enriched parenchymal cells have been shown to be superior to untreated cells by a number of criteria including: preparation homogeneity, cell morphology, maintenance of cytochrome P-450, hormonal responsiveness (measured by the induction of tyrosine aminotransferase after treatment with glucagon or dexamethasone, or both), plasma membrane integrity (determined by both trypan blue exclusion and leakage of glutamic-oxaloacetic transaminase), and the DNA repair capability after treatment with benzo[a]pyrene or 2-acetylaminofluorene.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Allen, C. M.; Hockin, L. J.; Paine, A. J. The control of glutathione and cytochrome P-450 concentrations in primary cultures of rat hepatocytes. Biochem. Pharmacol. 30:2739–2742; 1981.

    Article  PubMed  CAS  Google Scholar 

  2. Bengtsson, B. G.; Kiessling, K. H.; Smith-Kielland, A. Partial separation and biochemical characteristics of periportal perivenous hepatocytes from rat liver. Eur. J. Biochem. 118:591–597; 1981.

    Article  PubMed  CAS  Google Scholar 

  3. Berry, M. N.; Friend, D. S. High yield preparation of isolated rat liver parenchymal cells. J. Cell Biol. 63:506–520; 1969.

    Article  Google Scholar 

  4. Bonney, R. J.; Becker, J. E.; Walker, P. R., et al. Primary monolayer cultures of adult rat liver parenchymal cells suitable for study of the regulation of enzyme synthesis. In Vitro 9:399–413; 1974.

    Article  CAS  Google Scholar 

  5. Dalet, C.; Fehlmann, M.; Debey, P. Use of percoll density gradient centrifugation for preparing isolated rat hepatocytes having long-term viability. Anal. Biochem. 122:119–123; 1982.

    Article  PubMed  CAS  Google Scholar 

  6. Diamondstone, T. I. Assay of tyrosine transaminase activity by conversion ofp-hydroxyphenylpyruvate top-hydroxybenzaldehyde. Anal. Biochem. 16:395–401; 1966.

    Article  CAS  Google Scholar 

  7. Drochmans, P.; Wanson, J. C.; Mosselmans, R. Isolation and subfractionation on ficoll gradients of adult rat hepatocytes. J. Cell Biol. 66: 1–22; 1975.

    Article  PubMed  CAS  Google Scholar 

  8. Enerback, L.; Svensson, I. Isolation of rat peritoneal mast cells by centrifugation on density gradients of percoll. J. Immunol. Methods. 30: 135–145; 1980.

    Article  Google Scholar 

  9. Fischer, D. The separation of cells and organelles by partitioning in two-polymer aqueous phases. Biochem. J. 196: 1–10; 1981.

    Google Scholar 

  10. Friedberg, E. C.; Bonura, T.; Love, J. D., et al. The repair of DNA damage: Recent developments and new insights. J. Supramolecul. Stuct. Cell. Biochem. 16; 91–103; 1981.

    Article  CAS  Google Scholar 

  11. Granner, D. K.; Tomkins, G. M. Tyrosine aminotransferase (rat liver), Methods Enzymol. 17 (A): 633–637; 1970.

    CAS  Google Scholar 

  12. Gurr, J. A.; Potter, V. R. Independent induction of tyrosine aminotransferase activity by dexamethasone and glucagon in isolated rat liver parenchymal cells in suspension and in monolayer culture in serum-free media. Exp. Cell Res. 126: 237–248; 1980.

    Article  PubMed  CAS  Google Scholar 

  13. Hannig, K. Electrophoretic separations of cells and particles by continuous free-flow electrophoresis. In: Glick, D.; Rosenbaum, R., eds. Techniques of biochemical and biophysical morphology, vol. 1. New York: J. Wiley and Sons; 1972: 191–232.

    Google Scholar 

  14. Howard, R. B.; Christensen, A. K.; Gibbs, F. A. S., et al. The enzymatic preparation of isolated cells from rat liver. J. Cell Biol. 35: 675–684; 1967.

    Article  PubMed  CAS  Google Scholar 

  15. Hsia, M. T. S.; Kreamer, B. L.; Dolara, P. A simple and rapid method to quantitate chemically induced unschedule DNA synthesis in freshly isolated rat hepatocytes facilitated by DNA retention on membrane filters Mutation Res. 122: 177–185; 1983.

    Article  PubMed  CAS  Google Scholar 

  16. Immon, J.; Stead, A.; Waters, M. D. et al. Development of a toxicity test system using primary rat liver cells. In Vitro 17: 1004–1010; 1981.

    Article  Google Scholar 

  17. Jeejeebhoy, K. N.; Ho, J.; Greenberg, G. R. Albumin, fibrinogen, and transferrin synthesis in isolated rat hepatocyte suspensions. Biochem. J. 146: 141–155; 1975.

    PubMed  CAS  Google Scholar 

  18. Karmen, A. A note on the spectrophotometric assay of glutamic-oxaloacetic transaminase in human blood serum. J. Clin. Invest. 34: 131–133; 1955.

    PubMed  CAS  Google Scholar 

  19. Katz, N.; Brinkman, A. Gluconeogenic and glycolytic capacity of hepatocyte fractions obtained on density gradients. Z. Physiol. Chem. 360: 1161; 1979.

    Google Scholar 

  20. McLean, A. E. M.; Day, P. A. The use of new methods to measure the effect of diet and inducers of microsomal enzyme synthesis on cytochrome P-450 in liver homogenates and on metabolism of diethynitrosamine. Biochem. Pharmacol. 23: 1173–1180; 1974.

    Article  PubMed  CAS  Google Scholar 

  21. Meistrich, M. L.; Longtin, J. L.; Brock, W. A. Further purification of rat spermatogenic cells by density centrifugation. J. Cell Biol. 83: 226a; 1979.

    Google Scholar 

  22. Michalopoulos, G.; Pitot, H. C.: Primary culture of parenchymal liver cells on collagen membranes. Exp. Cell Res. 94: 70–78; 1975.

    Article  PubMed  CAS  Google Scholar 

  23. Michalopoulos, G.; Sattler, G. L.; Pitot, H. C. Maintenance of microsomal cytochromes b5 and P-450 in primary cultures of parenchymal liver cells on collagen membranes. Life Sci. 18: 1139–1144; 1976.

    Article  PubMed  CAS  Google Scholar 

  24. Nakamura, T.; Noda, C.; Ichihara, A. Two phase regulation of tyrosine aminotransferase activity by insulin in primary cultured hepatocytes of adult rats. Biochem. Biophys. Res. Commun. 99; 775–780; 1981.

    Article  PubMed  CAS  Google Scholar 

  25. Nakamura, T.; Yoshimoto, K.; Nakayama, Y., et al. Reciprocal modulation of growth and differentiated functions of mature rat hepatocytes in primary culture by cell-cell contact and cell membranes. Proc. Natl. Acad. Sci. USA 80: 7229–7233; 1983.

    Article  PubMed  CAS  Google Scholar 

  26. Omura, T.; Sato, R. The carbon monoxide binding pigment of liver microsomes. J. Biol. Chem. 239: 2370–2378; 1964.

    PubMed  CAS  Google Scholar 

  27. Pertoft, H.; Rubin, K.; Kjellen, L., et al. The viability of cells grown or centrifuged in a new density gradient medium, percoll (TM). Exp. Cell Res. 110: 449–457; 1977.

    Article  PubMed  CAS  Google Scholar 

  28. Rojkind, M.; Portales, M. L.; Cid, M. E. Isolation of rat liver cells containing concanavalin-A receptor sites. FEBS Lett. 47: 11–14; 1974.

    Article  PubMed  CAS  Google Scholar 

  29. Salisbury, J. G.; Graham, J. M.; Pasternak, C. A. A rapid method for the separation of large and small thymocytes from rats and mice. Biochem. Biophys. Methods 1: 341–347; 1979.

    Article  CAS  Google Scholar 

  30. Sawada, N.; Tsukada, H. Changes in phaloidin-sensitivity of hepatocytes of rats during 2-acetylaminofluorence carcinogenesis. Tumor Res. 17: 39–50; 1982.

    CAS  Google Scholar 

  31. Schacterle, G. R.; Pollack, R. L. A simplified method for the quantitative assay of small amounts of protein in biological materia. Anal. Biochem. 51: 654–655; 1973.

    Article  PubMed  CAS  Google Scholar 

  32. Seglen, P. O. Preparation of rat liver cells. II. Effects of ions and chelators on tissue dispersion. Exp. Cell. Res. 76; 25–30; 1973.

    Article  PubMed  CAS  Google Scholar 

  33. Seglen, P. O. Preparation of isolated rat liver cells. Methods Cell Biol. 13: 29–83; 1976.

    PubMed  CAS  Google Scholar 

  34. Singh, B.; Borrelaek, B.; Osmundsen, H. Separation of different cell populations of rat liver by density gradient centrifugation in a vertical rotor with self-generated percoll gradients. Acta Physiol. Scand. 117: 497–505; 1983.

    Article  PubMed  CAS  Google Scholar 

  35. Sirica, A. E.; Pitot, H. C. Drug metabolism and effects of carcinogens in cultured hepatic cells. Pharmacol. Rev. 31: 205–228; 1980.

    Google Scholar 

  36. Sumner, I. G.; Freedman, R. B.; Lodola, A. Characteristics of hepatocytes sub-populations generated by centrifugal elutriation. Eur. J. Biochem. 134: 539–545; 1983.

    Article  PubMed  CAS  Google Scholar 

  37. Tonda, K.; Hasegawa, T.; Hirata, M. Effects of phenobarbital and 3-methylcholanthrene pretreatments on monooxygenase activities and proportions of isolated rat hepatocyte subpopulations. Mol. Pharmacol. 23: 235–243; 1983.

    PubMed  CAS  Google Scholar 

  38. Tulp, A.; Weiagen, J.; Emmelot, P. Separation of intact rat hepatocytes and rat liver nuclei into ploidy classes by velocity sedimentation at unit gravity. Biochem. Biophys. Acta 451: 567–582; 1976.

    PubMed  CAS  Google Scholar 

  39. Vytasek, R. A sensitive fluorometric assay for the determination of DNA. Anal. Biochem. 120: 243–248; 1982.

    Article  PubMed  CAS  Google Scholar 

  40. Wanson, J. C. Morphological and biochemical characteristics of isolated and cultured hepatocytes. In: Tager, J. M.; Soling, H. D.; Williams, J. R., eds. Use of isolated liver cells and kidney tubules in metabolic studies. Amsterdam: North Holland Publishing; 1976: 185–199.

    Google Scholar 

  41. Weigand, K.; Muller, M.; Urban, J., et al. Intact endoplasmic reticulum and albumin synthesis in rat liver cell suspensions. Exp. Cell Res. 67: 27–32: 1971.

    Article  CAS  Google Scholar 

  42. Weissbach, A. The functional roles of mammalian DNA polymerases. Arch. Biochem. Biophys. 198: 386–396; 1979.

    Article  PubMed  CAS  Google Scholar 

  43. Williams, G. M. Primary and long-term culture of adult rat liver epithelial cells. Methods Cell Biol. 14: 357–364: 1976.

    Article  PubMed  CAS  Google Scholar 

  44. Williams, G. M. Detection of chemical carcinogens by unscheduled DNA synthesis in rat liver primary cell cultures. Cancer Res. 37: 1845–1851; 1977.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

This work was supported in part by the National Institutes of Health Biomedical Research Support Program, and National Institute of Environmental Health Services grant (ES-01737) awarded to M.T.S.H., and by National Cancer Institute grants CA-017175, CA-09135, CA-22484 awarded to H.C.P.N.S. was supported by a Cancer Research Campaign Grant (U. K.) through the International Union Against Cancer. This work was presented in part at the 24th Annual Meeting of the Society of Toxicology, 18–22 March 1985, San Diego, CA.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kreamer, B.L., Staecker, J.L., Sawada, N. et al. Use of a low-speed, iso-density percoll centrifugation method to increase the viability of isolated rat hepatocyte preparations. In Vitro Cell Dev Biol 22, 201–211 (1986). https://doi.org/10.1007/BF02623304

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02623304

Key words

Navigation