Skip to main content
Log in

Genetic predisposition to cancer with special reference to mutagen sensitivity

  • Invited Review
  • Published:
In Vitro Cellular & Developmental Biology Aims and scope Submit manuscript

Summary and Conclusions

From studies on cancer genetics, available information suggests the following tentative conclusions:

  1. 1.

    Cancer starts with a genetic change (or changes) from a normal somatic cell, but the changes (mutational events) must be specific in a target tissue cell. In a number of cases, genetic changes can be detected at the chromosome level.

  2. 2.

    Hereditary cancers usually have one genetic lesion already existing prezygotically; therefore only one additional mutational event is required in the homologous gene to complete the process of neoplastic transformation. In nonhereditary neoplasms, both mutations must occur postzygotically.

  3. 3.

    Individuals with high spontaneous mutation rates (monitored by chromosome breakage rates) are more liable to acquire specific genetic lesions than those with low mutation rates; therefore they are at higher risk to develop neoplasms.

  4. 4.

    Individuals with genetic defects in response to damage induced by mutagens (carcinogens) are more liable to accumulate genetic lesions than those who are more resistant; therefore, they are more liable to develop cancers. Mutagen sensitivity or resistance is probably genetic expression of DNA repair capabilities.

  5. 5.

    An effective assay method for sensitivity or resistance to mutagens can be developed to analyze the human population to identify the at-risk fraction.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Yunis, J. J. High resolution of human chromosomes. Science 191:1268–1270; 1976.

    Article  PubMed  CAS  Google Scholar 

  2. Zech, L.; Haglund, U.; Nilsson, K., et al.. Characteristic chromosomal abnormalities in biopsies and lymphoid-cell lines from patients with Burkitt and non-Burkitt lymphomas. Int. J. Cancer 17:47–56; 1976.

    Article  PubMed  CAS  Google Scholar 

  3. Rowley, J. D. A new consistent chromosome abnormality in chronic myelogenous leukemia identified by quinacrine fluorescence and Giemsa staining. Nature 243:290–293; 1973.

    Article  PubMed  CAS  Google Scholar 

  4. Zang, K. D.; Singer, H. Chromosome constitution of meningiomas. Nature 216:84–85; 1967.

    Article  PubMed  CAS  Google Scholar 

  5. Lele, K. P.; Penrose, L. S.; Stallard, H. B. Chromosome deletion in a case of retinoblastoma. Ann. Hum. Genet. 27:171–174; 1963.

    PubMed  CAS  Google Scholar 

  6. Orge, E.; Delbeke, M. J.; Vandenabeele, B. Retinoblastoma and D-chromosome deletions. Lancet 2:1376; 1971.

    Google Scholar 

  7. Wilson, M. G.; Melnyk, J.; Towner, J. W. Retinoblastoma and deleted D(14) syndrome. J. Med. Genet. 6:322–327; 1969.

    PubMed  CAS  Google Scholar 

  8. Slater, R. M.; Bleeker-Wagemakers, E. M. Aniridia, Wilms' tumor and chromosome number 11. 12th annual meetings, Intern. Soc. Pediatric Oncol., Budapest, 1980:88.

  9. Keneko, Y.; Egues, M. C.; Rowley, J. D. Interstitial deletion of short arm of chromosome 11 limited to Wilms' tumor cells in a patient with aniridia. Cancer Res. 41:4577–4578; 1981.

    Google Scholar 

  10. Osada, I.; Shiroko, Y.; Miyamoto, Y., et al. Establishment of a cell line (W-2) derived from human Wilms' tumor showing chromosome 11 short arm interstitial deletions Proc. Jap. Cancer Assoc. Abstract 40th Annual Meeting, Sapporo, 1981:181.

  11. Pathak, S.; Goodacre, A. Specific chromosome anomalies and predisposition to human breast, renal cell, and colorectal carcinoma. Cancer Genet. Cytogenet. 19:29–36; 1986.

    Article  PubMed  CAS  Google Scholar 

  12. Wang, N.; Soldat, L.; Fan, S., et al. The consistent involvement of chromosome 3 and 6 aberrations in renal cell carcinoma. Am. J. Hum. Genet. 35:73A; 1983.

    Google Scholar 

  13. Pathak, S.; Drwinga, H. L.; Hsu, T. C. Involvement of chromosome 6 in rearrangements in human malignant melanoma cell lines. Cytogenet. Cell Genet. 36:573–579; 1983.

    PubMed  CAS  Google Scholar 

  14. Trent, J. M.; Rosenfeld, S. B.; Meyskens, F. L. Chromosome 6q involvement in human malignant melanoma. Cancer Genet. Cytogenet. 9:177–180; 1983.

    Article  PubMed  CAS  Google Scholar 

  15. Cruciger, Q. V. J.; Pathak, S.; Cailleau, R. Human breast carcinomas: Marker chromosomes involving lq in seven cases. Cytogenet. Cell Genet. 17:231–235; 1976.

    PubMed  CAS  Google Scholar 

  16. Pathak, S.; Siciliano, M. J.; Cailleau, R., et al. A human breast adenocarcinoma with chromosome and isozyme markers similar to those of the HeLa line. JNCI 62:263–271; 1979.

    PubMed  CAS  Google Scholar 

  17. Satya-Prakash, K. L.; Pathak, S.; Hsu, T. C., et al. Cytogenetic analysis of eight human breast tumor cell lines: High frequencies of 1q, 11q, and HeLa-like marker chromosomes. Cancer Genet. Cytogenet. 3:61–73; 1981.

    Article  PubMed  CAS  Google Scholar 

  18. Krizman, D. B.; Carpenter, N. J.; Pathak, S., et al. HeLa marker chromosomes in human breast tumors: Proposal about the origin of the HeLa cell line. J. Clin. Lab. Anal. 1:93–97; 1987.

    Article  Google Scholar 

  19. Pathak, S.; Hsu, T. C. Cytogenetic analysis of human neoplasia with special reference to breast and female genital tumors. In: McGrath, C. M.; Brennan, M. J.; Rich, M. A., eds. Cell biology of breast cancer. New York; Academic Press; 1980:57–75.

    Google Scholar 

  20. Miller, O. J.; Miller, D. A.; Allderdice, P. W., et al. Quinacrine fluorescent karyotypes of human diploid and heteroploid cell lines. Cytogenetics 10:338–346; 1971.

    PubMed  CAS  Google Scholar 

  21. Knudson, A. G. Mutation and cancer: Statistical study of retinoblastoma. Proc. Natl. Acad. Sci. USA 68:820–823; 1971.

    Article  PubMed  Google Scholar 

  22. Francke, U. Specific chromosome changes in the human heritable tumors retinoblastoma and nephroblastoma. In: Rowley, J. D.; Ultmann, J. E., eds. Chromosomes and cancer. New York: Academic Press; 1983:99–115.

    Google Scholar 

  23. Strong, L. C.; Riccardi, V. M.; Ferrell, R. E. Familial retinoblastoma and chromosome 13 deletion transmitted via an insertional translocation. Science 213:1501–1503; 1981.

    Article  PubMed  CAS  Google Scholar 

  24. Knudson, A. G.; Strong, L. C. Mutation and cancer: A model for Wilms' tumor of the kidney. JNCI 48:313–324; 1972.

    PubMed  Google Scholar 

  25. Riccardi, V. M.; Sujansky, E.; Smith, A. C., et al. Chromosomal imbalance in the aniridia-Wilms' tumor association: 11p interstitial deletion. Pediatrics 61:604–610; 1978.

    PubMed  CAS  Google Scholar 

  26. Cohen, A. J.; Li, F. P.; Berg, S., et al. Hereditary renal-cell carcinoma associated with a chromosomal translocation. N. Engl. J. Med. 301:592–595; 1979.

    Article  PubMed  CAS  Google Scholar 

  27. Pathak, S.; Strong, L. C.; Ferrell, R. E., et al. Familial renal cell carcinoma with a 3;11 chromosome translocation limited to tumor cells. Science 217:939–941; 1982.

    Article  PubMed  CAS  Google Scholar 

  28. Anderson, D. E.; Ferrell, R. E.; Williams, W. R. A linkage study of human breast cancer. Cytogenet. Cell Genet. 40:568–569; 1985.

    Google Scholar 

  29. Pathak, S. Constitutional translocations and predisposition to T-and B-cell malignancies. Cytogenet. Cell Genet. 43:223–225; 1986.

    PubMed  CAS  Google Scholar 

  30. Croce, C. M.; Isobe, M.; Palumbo, A., et al. Gene for α-chain of human T-cell receptor: Location on chromosme 14 region involved in T-cell neoplasm. Science 227:1044–1047; 1985.

    Article  PubMed  CAS  Google Scholar 

  31. Motegi, T. High rate of deletion of 13q14 deletion mosaicism among retinoblastoma patients. Hum. Genet. 61:95–97; 1982.

    Article  PubMed  CAS  Google Scholar 

  32. German, J. Chromosome mutation and neoplasia. New York: Alan R. Liss; 1983.

    Google Scholar 

  33. Bloom, D. Congenital telangiectatic erythema resembling lupus erythematosis in dwarfs. Probably a syndrome entity. Am. J. Dis. Child. 88:754–758; 1954.

    CAS  Google Scholar 

  34. German, J. Bloom's syndrome. I.. Genetical and clinical observations in the first twenty-seven patients. Am. J. Hum. Genet. 21:196–227; 1969.

    PubMed  CAS  Google Scholar 

  35. German, J. Patterns of neoplasia associated with the chromosome-breakage syndromes. In: German, J., ed. Chromosome mutation and neoplasia. New York: Alan Liss; 1983:97–134.

    Google Scholar 

  36. Passarge, E. Bloom's Syndrome. In: German, J., ed. Chromosome mutation and neoplasia. New York: Alan Liss; 1983:11–21.

    Google Scholar 

  37. German, J.; Archibald, R.; Bloom, D. Chromosomal breakage in a rare and probably genetically determined syndrome of man. Science 148:506–507; 1965.

    Article  PubMed  CAS  Google Scholar 

  38. Chaganti, R. S. R.; Schonberg, S.; German, J. A many-fold increase in sister chromatid exchanges in Bloom's syndrome lymphocytes. Proc. Natl. Acad. Sci. USA 71:4508–4513; 1974.

    Article  PubMed  CAS  Google Scholar 

  39. Syllaba, L.; Henner, K. Contribution a l'independence de l'athetose double idiopathique et congentical. Atteinte familiale, syndrome dystrophique, signe du reseau vasculaire conjuctival, integrite physique. Rev. Neurol. (Paris) 1:541–562; 1926.

    Google Scholar 

  40. Spector, B.; Perry, G.; Kersey, J. Genetically-determined immunodeficiency diseases (GDID) and malignancy. Report from the immunodeficiency-cancer registry. Clin. Immunol. Immunopathol. 11:12–29; 1978.

    Article  PubMed  CAS  Google Scholar 

  41. Hecht, F.; Koler, R. D.; Rigas, D. A., et al. Leukemia and lymphocytes in ataxia telangiectasia. Lancet 2:1193; 1966.

    Article  Google Scholar 

  42. Faconi, G. Familiare infantile perniziosaatige Anamie (pernizioses Blutbild und Konstitution). Z. Kinderheilkd. 117:257–280; 1927.

    Google Scholar 

  43. Schroeder, T. M.; Anschutz, F.; Knopp, A. Spontane chromosomenaberrationen bei familiarer panmyelopathie. Humangenetik 1:194–196; 1964.

    Article  PubMed  CAS  Google Scholar 

  44. Bloom, G. E.; Werner, S.; Gerald, P. S., et al. Chromosome abnormalities in constitutional aplastic anemia. N. Engl. J. Med. 274:8–14; 1966.

    Article  PubMed  CAS  Google Scholar 

  45. German, J.; Crippa, L. P. Chromosome breakage in diploid cell lines from Bloom's syndrome and Fanconi's anemia. Ann. Genet. 9:143–154; 1966.

    Google Scholar 

  46. Schroeder, T. M.; Drings, P.; Beilner, P., et al. Clinical and cytogenetic observations during a six-year period in an adult with Fanconi's anemia. Blut 34:119–132; 1976.

    Article  Google Scholar 

  47. Werner, C. W. O. Uber katarakt in verbindung mit sklerodermie. Germany: Kiel University; 1904 Dissertation.

    Google Scholar 

  48. Hoehn, H.; Bryant, E. M.; Au, K., et al. Variegated translocation mosaicism in human skin fibroblast cultures. Cytogenet. Cell Genet. 15:282–298; 1975.

    PubMed  CAS  Google Scholar 

  49. Norwood, T. H.; Hoehn, H.; Salk, D., et al. Cellular aging in Werner's syndrome. A unique phenotype. J. Invest. Dermatol. 73:92–96; 1979.

    Article  PubMed  CAS  Google Scholar 

  50. Salk, D.; Au, K.; Hoehn, H., et al. Cytogenetics of Werner syndrome cultured skin fibroblasts: Variegated translocation mosaicism. Cytogenet. Cell Genet. 30:92–107; 1981.

    PubMed  CAS  Google Scholar 

  51. Nordenson, I. Chromosome breaks in Werner's syndrome and their prevention in vitro by radical scavenging enzymes. Hereditas 87:151–154; 1977.

    Article  PubMed  CAS  Google Scholar 

  52. Ledbetter, D. H.; Airhart, S. D.; Hittner, H. M., et al. Extreme chromosome instability in a family with retinoblastoma and Wilm's tumor. Mamm. Chromosomes Newslett. 25:17; 1984.

    Google Scholar 

  53. Ikeuchi, T.; Kawasaki, T. Spontaneous chromosome breakages in leukocytes from patients with hereditary spinocerebellar ataxia. Chromosome Inform. Serv. 14:9–11; 1973.

    Google Scholar 

  54. Emerit, I. Chromosome breakage in systemic slerosis and related disorders. Dermatologia 153:145–156; 1976.

    Article  CAS  Google Scholar 

  55. Hsu, T. C.; Pathak, S.; Samaan, N., et al. Chromosome instability in patients with multiple endocrine adenomatosis syndrome type II. JAMA 246:2046–2048; 1981.

    Article  PubMed  CAS  Google Scholar 

  56. Sutherland, G. R.; Hecht, F. Fragile sites on human chromosomes. New York: Oxford University Press; 1985.

    Google Scholar 

  57. LeBeau, M. M.; Rowley, J. D. Heritable fragile sites in cancer. Nature 308:607–608; 1984.

    Article  PubMed  CAS  Google Scholar 

  58. Yunis, J. J.; Soreng, A. L. Constitutive fragile sites and cancer. Science 226:1199–1204; 1984.

    Article  PubMed  CAS  Google Scholar 

  59. Setlow, R. B. Repair deficient human disorders and cancer. Nature 271:713–717; 1978.

    Article  PubMed  CAS  Google Scholar 

  60. Glickman, B. W. DNA repair and its relationship to the origins of human cancer. In: Cleton, F. J.; Simons, J. W. I. M., eds. Genetic origin of tumor cells. The Hague: Martinus Nijhoff Publ.; 1980:25–51.

    Google Scholar 

  61. Cleaver, J. E.; Bootsma, D. Xeroderma pigmentosum: Biochemical and genetic characteristics. Ann. Rev. Genet. 9:19–38; 1975.

    Article  PubMed  CAS  Google Scholar 

  62. Parrington, J. M.; Delhanty, J. D. A.; Baden, H. P. Unscheduled DNA synthesis, U.V.-induced chromosome aberrations and SV40 transformation in cultured cells from xeroderma pigmentosum. Ann. Hum. Genet. 35:149–160; 1971.

    Article  PubMed  CAS  Google Scholar 

  63. Maher, V. M.; Ouellette, L. M.; Curren, R. D., et al. Frequency of ultraviolet light induced mutation is higher in xerodema pigmentosum variant cells. Nature 261:593–595; 1976.

    Article  PubMed  CAS  Google Scholar 

  64. Setlow, R. B.; Regan, J. D.; German, J., et al. Evidence that xeroderma pigmentosum cells do not perform the first step in the repair of ultra-violet damage to their DNA. Proc. Natl. Acad. Sci. USA 64:1035–1041; 1969.

    Article  PubMed  CAS  Google Scholar 

  65. Cleaver, J. E. Defective repair replications of DNA in xeroderma pigmentosum. Nature 218:652–656; 1968.

    Article  PubMed  CAS  Google Scholar 

  66. Painter, R. B.; Young, B. R. Repair replication in mammalian cells after X-irradiation. Mut. Res. 14:225–235; 1972.

    CAS  Google Scholar 

  67. Evans, H. J.; Adams, A. C.; Clarkson, J. M., et al. Chromosome aberrations and unscheduled DNA synthesis in X- and UV-irradiated lymphocytes from a boy with Bloom's syndrome and a man with xeroderma pigmentosum. Cytogenet. Cell Genet. 20:124–140; 1978.

    PubMed  CAS  Google Scholar 

  68. Stich, H. F.; San, R. H. C.; Kawazone, Y. Increased sensitivity of xeroderma pigmentosum cells to some chemical carcinogens and mutagens. Mut. Res. 17:127–137; 1973.

    CAS  Google Scholar 

  69. Sasaki, M. S. DNA repair capacity and susceptibility to chromosome breakage in xeroderma pigmentosum cells. Mut. Res. 20:291–293; 1973.

    CAS  Google Scholar 

  70. San, R. H. C.; Stich, W.; Stich, H. F. Differential sensitivity of xeroderma pigmentosum cells of different repair capacities toward chromosome breakage action of carcinogens and mutagens. Int. J. Cancer 20:181–187; 1977.

    Article  PubMed  CAS  Google Scholar 

  71. Taylor, A. M. R.; Metcalfe, J. A.; Oxford, J. M., et al. Is chromatid-type damage in ataxia telangiectasia after irradiation at Go a consequence of defective repair? Nature 260:441–443; 1976.

    Article  PubMed  CAS  Google Scholar 

  72. Higarashi, M.; Coenen, F. E. In vitro chromosomal radiosensitivity in “chromosomal breakage syndromes”. Cancer 32:380–383; 1973.

    Article  Google Scholar 

  73. Taylor, A. M. R.; Rosney, C. M.; Campbell, J. B. Unusual sensitivity of ataxia telangiectasia cells to bleomycin. Cancer Res. 39:1046–1050; 1979.

    PubMed  CAS  Google Scholar 

  74. Arlett, C. F.; Harcourt, S. A. Cell killing and mutagenesis in repair-defective human cells. In: Hanawalt, P. C.; Friedberg, E. C.; Fox, C. F., eds. DNA repair mechanisms. New York: Academic Press; 1978:633–638.

    Google Scholar 

  75. Smith, P. J.; Paterson, M. C. In vitro co-sensitivity to near-UV light and ionizing radiation in two human syndromes. Environ. Mutagen. 1:153–154; 1979.

    Google Scholar 

  76. Sasaki, M. S.; Tonomura, A. A high susceptibility of Faconi's anemia to chromosome breakage by DNA cross-linking agents. Cancer Res. 33:1829–1836; 1973.

    PubMed  CAS  Google Scholar 

  77. Heddle, J. A.; Leu, C. B.; Saunders, F., et al. Sensitivity to five mutagens in Fanconi's anemia as measured by the micronucleus method. Cancer Res. 38:2983–2988; 1978.

    PubMed  CAS  Google Scholar 

  78. Auerbach, A. D.; Wolman, S. R. Susceptibility of Fanconi's anemia fibroblasts to chromosome damage by carcinogens. Nature 261:494–496; 1976.

    Article  PubMed  CAS  Google Scholar 

  79. Auerbach, A. D.; Wolman, S. R. Carcinogen-induced chromosome breakage in chromosome instability syndromes. Cancer Genet. Cytogenet. 1:21–28; 1979.

    Article  CAS  Google Scholar 

  80. Berger, R.; Bernheim, A.; Le Coniat, M.; et al. Sister chromatid exchanges induced by nitrogen mustard in Fanconi's anemia. Application to the detection of heterozygotes and interpretation of the results. Cancer Genet. Cytogenet. 2:259–269; 1980.

    Article  Google Scholar 

  81. Heddle, J. A.; Krepinsky, A. B.; Marshall, R. R. Cellular sensitivity to mutagens and carcinogens in the chromosome-breakage and other cancer-prone syndromes. In: German, J., ed. Chromosome mutation and neoplasia. New York: Alan R. Liss; 1983:203–234.

    Google Scholar 

  82. Hsu, T. C.; Au, W. W.; Strong, L. C., et al. A short-term cytogenetic test for genetic instability in humans. In: Stich, H. F.; San, R. H. C. eds. Short-term tests for chemical carcinogens. New York: Springer-Verlag; 1981:217–235.

    Google Scholar 

  83. Cherry, L. M.; Hsu, T. C. Bleomycin-induced chromosome damage in lymphocytes of medullary thyroid carcinoma patients and their family members. Anticancer Res. 3:367–372; 1983.

    PubMed  CAS  Google Scholar 

  84. Hsu, T. C.; Cherry, L. M.; Samaan, N. A. Differential mutagen susceptibility in cultured lymphocytes of normal individuals and cancer patients. Cancer Genet. Cytogenet. 17:307–313; 1985.

    Article  PubMed  CAS  Google Scholar 

  85. Hsu, T. C. Genetic susceptibility to carcinogenesis. Cancer Bull. 38:125–128; 1986.

    Google Scholar 

  86. Ikegami, S.; Taguchi, T.; Ohashi, M. Aphidiolin prevents mitotic cell division by interfering with the activity of DNA polymerase. Nature 275:458–459; 1978.

    Article  PubMed  CAS  Google Scholar 

  87. Hsu, T. C.; Ramkissoon, D.; Furlong, C. Differential susceptibility to a mutagen among human individuals: Synergistic effect on chromosome damage between bleomycin and aphidicolin. Anticancer Res. 6:1171–1176; 1986.

    PubMed  CAS  Google Scholar 

  88. Bender, M. A. Role of DNA polymerase in chromosomal aberration production by ionizing radiation. Ann. NY Acad. Sci. 459:245–254; 1985.

    Article  PubMed  CAS  Google Scholar 

  89. Edenberg, H. J.; Anderson, S.; de Pamphilis, M. L. Involvement of DNA polymerase alpha in simian virus 40 DNA replication. J. Biol. Chem. 253:3273–3278; 1978.

    PubMed  CAS  Google Scholar 

  90. Parshad, R.; Sanford, K. K.; Jones, G. M. Chromatid damage after G2 phase X-irradiation of cells from cancer-prone individuals implicates deficiency in DNA repair. Proc. Natl. Acad. Sci. USA 80:5612–5616; 1983.

    Article  PubMed  CAS  Google Scholar 

  91. Chatham workshop conference on karyological monitoring of normal cell populations. Intern. Assoc. of Biol. Standardization; 1971.

  92. Satya-Prakash, K. L.; Hsu, T. C.; Pathak, S. Chromatid lesions and chromatid core morphology. Cytogenet. Cell Genet. 30:248–252; 1981.

    PubMed  CAS  Google Scholar 

  93. An International system for human cytogenetic nomenclature (1985). Cytogenet. Cell Genet. 31:1–23; 1981.

    Google Scholar 

  94. Ledbetter, D. H. Current status of cytogenetics in birth defects and prenatal diagnosis. Cancer Bull. 35:106–114; 1983.

    Google Scholar 

  95. Hsu, T. C. Genetic susceptibility to carcinogenesis. Cancer Bull. 38:125–128; 1986.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Supported in part by Research Grants from the John S. Dunn Foundation, Houston and Ca-35007 from the National Cancer Institute.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hsu, T.C. Genetic predisposition to cancer with special reference to mutagen sensitivity. In Vitro Cell Dev Biol 23, 591–603 (1987). https://doi.org/10.1007/BF02621067

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02621067

Keywords

Navigation