Skip to main content
Log in

Growth factor requirements of organogenesis in serum-free metanephric organ culture

  • Rapid Communications in Cell Biology
  • Published:
In Vitro Cellular & Developmental Biology Aims and scope Submit manuscript

Summary

In order to define humoral growth factors which may regulate mammalian renal development, the growth requirements of fetal metanephric organogenesis were studied in serum-free murine organ culture. Metanephric growth, determined by cell proliferation and protein content, and metanephric differentiation, determined morphometrically as epithelial glomerular formation, were compared and contrasted following 144 hours of organ culture incubation in basal medium, basal medium supplemented with 10% fetal bovine serum, and basal medium supplemented with various combinations of growth factors. The basal medium was composed of equal volumes of Dulbecco's modified Eagle's medium and Hams' F-12 medium. Five humoral growth factors were studied in the following concentrations: selenium, 6.8×10−9 M; insulin, 8.3×10−7 M; triiodothyronine, 2×10−9 M; transferrin, 6.2×10−8 M; and prostaglandin E1, 7.1×10−8 M. Results showed that transferrin and prostaglandin E1 were necessary for optimal growth in the system and that prostaglandin E1 was necessary for maximal metanephric differentiation. Such data provide guidelines for the creation of serum-free medium for future fetal renal cell and tissue culture systems, and provide insight into the factors which may regulate normal and abnormal renal embryogenesis and the reparative processes of renal hyperplasia and hypertrophy which follow renal injury.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

References

  1. Avner, E. D.; Ellis, D.; Temple, T.; Jaffe, R. Metanephric development in serum-free organ culture. In Vitro 18:675–682; 1982.

    Article  PubMed  CAS  Google Scholar 

  2. Avner, E. D.; Jaffe, R.; Temple, T.; Ellis, D.; Chung, A. E. The development of renal basement membrane glycoproteins in metanephric organ culture. Lab. Invest. 48:263–268; 1983.

    PubMed  CAS  Google Scholar 

  3. Avner, E. D.; Sweeney, W. E.; Ellis, D. Cyst formation in metanephric organ culture induced by cis-dichlorodiammine platinum (II). Experientia 39:74–76; 1983.

    Article  PubMed  CAS  Google Scholar 

  4. Avner, E. D.; Villee, D. B.; Schneeberger, E. E.; Grupe, W. E. An organ culture model for the study of metanephric development. J. Urol. 129:660–664; 1983.

    PubMed  CAS  Google Scholar 

  5. Avner, E. D.; Piesco, N. P.; Sweeney, W. E.; Studnicki, F. M.; Fetterman, G. H.; Ellis, D. Hydrocortisone-induced cystic metanephric maldevelopment in serum-free organ culture. Lab. Invest. 50:208–218; 1984.

    PubMed  CAS  Google Scholar 

  6. Avner, E. D.; Sweeney, W. E.; Piesco, N. P.; Ellis, D. A new model of glucocorticoid-induced cystic metanephric maldevelopment. Experientia 40:489–490; 1984.

    Article  PubMed  CAS  Google Scholar 

  7. Avner, E. D.; Sweeney, W. E.; Ellis, D. Serum-free organ culture of embryonic mouse metanephros. Sirbasku, D. A.; Barnes, D. W.; Sato, G. H. eds. Cell culture methods for molecular and cell biology. Vol. 3. Methods for serum-free culture of epithelial and fibroblastic cells. New York: A. R. Liss; 1984:33–42.

    Google Scholar 

  8. Avner, E. D.; Sweeney, W. E.; Finegold, D. N.; Piesco, N. P.; Ellis, D. Sodium-potassium ATPase activity mediates cyst formation in metanephric organ culture. Kidney Int. 28: (in press); 1985.

  9. Barnes, D.; Sato, G. Methods for growth of cultured cells in serum-free medium. Anal. Biochem. 102:255–270; 1980.

    Article  PubMed  CAS  Google Scholar 

  10. Barnes, D.; Sato, G. Serum-free cell culture: A unifying approach. Cell 22:649–655; 1980.

    Article  PubMed  CAS  Google Scholar 

  11. Chuman, L.; Fine, L. G.; Cohen, A. I.; Saier, M. H. Continuous growth of proximal tubular kidney epithelial cells in hormone-supplemented serum-free medium. J. Cell. Biol. 94:506–510; 1982.

    Article  PubMed  CAS  Google Scholar 

  12. Chung, S. D.; Alavi, N.; Livingston, D.; Hiller, S.; Taub, M. Characterization of primary rabbit kidney cultures that express proximal tubule functions in a hormonally defined medium. J. Cell Biol. 95:118–126; 1982.

    Article  PubMed  CAS  Google Scholar 

  13. Colton, T. Statistics in medicine. Boston: Little, Brown; 1974; 112–150; 219–228.

    Google Scholar 

  14. D'Ercole, A. J.; Underwood, L. E. Growth factors in fetal growth and development. Novy, M. J.; Resko, J. A. eds. Fetalendocrinology. New York: Academic Press; 1981:155–182.

    Google Scholar 

  15. Detrisac, C. J.; Sens, M. A.; Garvin, A. J.; Spicer, S. S.; Sens, D. A. Tissue culture of human kidney epithelial cells of proximal tubule origin. Kidney Int. 25:383–390; 1984.

    PubMed  CAS  Google Scholar 

  16. Edelman, G. M. Cell adhesion molecules. Science 219:450–457; 1983.

    Article  PubMed  CAS  Google Scholar 

  17. Edelman, G. M. Cell adhesion and morphogenesis: The regulator hypothesis. Proc. Natl. Acad. Sci. USA 81:1460–1464; 1984.

    Article  PubMed  CAS  Google Scholar 

  18. Ekblom, P. Determination and differentiation of the nephron. Med. Biol. 59:139–160; 1981.

    PubMed  CAS  Google Scholar 

  19. Ekblom, P.; Thesleff, I.; Miettinen, A.; Saxen, L. Organogenesis in a defined medium supplemented with tranferrin. Cell Differ. 10:281–288; 1981.

    Article  PubMed  CAS  Google Scholar 

  20. Ekblom, P.; Thesleff, I.; Saxen, L.; Miettinen, A.; Timpl, R. Transferrin as a fetal growth factor: Acquisition of responsiveness related to embryonic induction. Proc. Natl. Acad. Sci. USA 80:2651–2655; 1983.

    Article  PubMed  CAS  Google Scholar 

  21. Elias, H.; Henning, A. Stereology of the human renal glomerulus. Weibel, E. R.; Elias, H. eds. Quantitative methods in morphology. New York: Springer-Verlag: 1967:130–162.

    Google Scholar 

  22. Ham, R. G.; McKeehan, W. L. Media and growth requirements. Methods Enzymol. 58:44–93; 1979.

    Article  PubMed  CAS  Google Scholar 

  23. Ham, R. G. Importance of the basal nutrient medium in the design of hormonally defined medium. Sato, G. H.; Pardee, A. B.; Sirbasku, D. A., eds. Cold Spring Harbor conferences on cell proliferation. Vol. 9. New York: Cold Spring Harbor; 1982:39–60.

    Google Scholar 

  24. Handler, J. S.; Preston, A. S.; Steele, R. E. Factors affecting the differentiation of epithelial transport and responsiveness to hormones. Federation Proc. 43:2221–2224; 1984.

    CAS  Google Scholar 

  25. Horster, M. Principles of nephron differentiation. Am. J. Physiol. 235:F387-F394; 1978.

    CAS  Google Scholar 

  26. Horster, M. Hormonal stimulation and differential growth response of renal epithelial cells cultivated in vitro from individual nephron segments. Int. J. Biochem. 12:29–35; 1980.

    Article  PubMed  CAS  Google Scholar 

  27. Jost, A. Fetal hormones and fetal growth. Contrib. Gynecol. Obstet. 5:1–20; 1979.

    PubMed  CAS  Google Scholar 

  28. Loud, A. V.; Anversa, P. Morphometric analysis of biological processes. Lab. Invest. 50:250–261; 1984.

    PubMed  CAS  Google Scholar 

  29. Lowry, O. H.; Rosebrough, N. J.; Farr, A. L.; Randall, R. J. Protein measurement with the folin phenol reagent. J. Biol. Chem. 193:265–275; 1951.

    PubMed  CAS  Google Scholar 

  30. Oberley, T. D.; Murphy-Ullrich, J. E.; Steinert, B. W.; Vicmuth, J. The growth of primary glomerular cells as a confluent monolayer in a chemically defined serum-free medium. Am. J. Pathol. 104:181–188; 1981.

    PubMed  CAS  Google Scholar 

  31. Olivetti, G.; Anversa, P.; Melissari, M.; Loud, A. V. Morphometry of the renal corpuscle during, postnatal growth and compensatory hypertrophy. Kidney Int. 17:438–454; 1980.

    PubMed  CAS  Google Scholar 

  32. Patt, L. M.; Houck, J. C. Role of polypeptide growth factors in normal and abnormal growth. Kidney Int. 23:603–610; 1984.

    Google Scholar 

  33. Patterson, M. K. Measurement of growth and viability of cells in culture. Jakoby, W. B.; Pastan, I. H., eds. Methods in enzymology. Vol. 58. Cell culture. New York: Academic Pres; 1979:141–151.

    Google Scholar 

  34. Taub, M.; Chuman, L.; Saier, M. H.; Sato, G. Growth of Madin Darby canine kidney epithelial cell (MDCK) line in hormone-supplemented serum-free medium. Proc. Natl. Acad. Sci. USA 76:3338–3342; 1979.

    Article  PubMed  CAS  Google Scholar 

  35. Taub, M.; Sato, G. Growth of functional primary cultures of kidney epithelial cells in defined medium. J. Cell Physiol. 105:369–378; 1980.

    Article  PubMed  CAS  Google Scholar 

  36. Taub, M.; Livingston, D. The development of serum-free hormone supplemented media for primary kidney cultures and their use in examining renal functions. Ann. N.Y. Acad. Sci. 372:406–421; 1981.

    Article  PubMed  CAS  Google Scholar 

  37. Taub, M. Growth of primary and established kidney cell cultures in serum-free media. Sirbasku, D. A.; Barnes, D. W.; Sato, G. H. eds. Cell culture methods for molecular and cell biology. Vol. 3. Methods for serum-free culture of epithelial and fibroblastic cells New York: A. R. Liss; 1984: 3–24.

    Google Scholar 

  38. Taub, M.; Saier, M. H.; Chuman, L.; Hiller, S. Loss of the PGE1 requirement for MDCK cell growth associated with a defect in cyclic AMP phosphodiesterase. J. Cell. Physiol. 114:153–161; 1983.

    Article  PubMed  CAS  Google Scholar 

  39. Thesleff, I.; Ekblom, P. Role of transferrin in branching morphogenesis, growth, and differentiation of the embryonic kidney. J. Embryol. Exp. Morphol. 82:147–161; 1984.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

A preliminary report of this work was presented at the Ninth International Congress of Nephrology, Los Angeles, June 1984. These studies were supported in part by Basil O'Connor Starter Research Grant 5-349 from the March of Dimes Birth Defects Foundation and New Investigator Research Award I-R23-AM34891-01 from the National Institute of Arthritis, Diabetes, and Digestive and Kidney Diseases of the National Institutes of Health (Both to Dr. Avner).

Editor's Statement The determination of effects of extracellular components on the introduction and maintenance of differentiation is an area for which serum-free culture techniques are particularly suited. The approaches described in this report utilize morphometric techniques to quantitate differentiation in serum-free fetal organ culture in addition to standard methodologies for assessing growth. The purely epithelial nature of the cultures used in these studies also provides some interesting advantages in the design of experiments aimed, at determining the importance of cell-cell interactions at various stages in the differentiative process. David W. Barnes

Rights and permissions

Reprints and permissions

About this article

Cite this article

Avner, E.D., Sweeney, W.E., Piesco, N.P. et al. Growth factor requirements of organogenesis in serum-free metanephric organ culture. In Vitro Cell Dev Biol 21, 297–304 (1985). https://doi.org/10.1007/BF02620946

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02620946

Key words

Navigation