Skip to main content
Log in

Production of IGF-II-related peptide by an anaplastic cells line (AT-3) established from the dunning prostatic carcinoma of rats

  • Rapid Communications in Cell Biology
  • Published:
In Vitro Cellular & Developmental Biology Aims and scope Submit manuscript

Editor's statement One or more members of the insulin-like growth factor family have been established previously as mitogen for isolated prostate cells. This report suggests that IGF-II member of the family may be involved in autocrine support of cells from highly malignant prostate tumors.

Summary

AT-3 cells, one of anaplastic cell lines established from the Dunning prostatic carcinoma of rats, were able to grow under serum-free conditions in a state of suspension detached from a substratum. Radioimmunoassays using monoclonal antibody against rat insulin-like growth factor II (IGF-II) revealed the presence of IGF-II-related peptide in acid-ethanol extracts extracsts of lyophilized serum-free media conditioned by AT-3 cell. The peptide contents in the culture media increased with increase in cell number; 71 ng at 3.0 × 106 cells and 449 ng at 4.6 × 107 cells. IGF-II-related peptide was hardly detectable in acid-ethanol extracts of AT-3 cells harvested after 13-days culture. These results indicate that AT-3 cells produce IGF-II-related peptide ana may release it into the culture media.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

References

  1. Dulak, N. C.; Temin, H. M. A partially purified polypeptide fraction from rat liver cell conditioned medium with multiplication stimulating activity for embryo fibroblasts. J. Cell. Physiol. 81: 153–160; 1973.

    Article  PubMed  CAS  Google Scholar 

  2. Dulak, N. C.; Temin, H. M. Multiplication-stimulating activity for chicken fibroblasts from rat liver cell conditioned medium: A family of small polypeptides. J. Cell. Physiol. 81: 161–170; 1973.

    Article  PubMed  CAS  Google Scholar 

  3. Adams, S. O.; Nissley, S. P.; Handwerger, S., et al. Developmental patterns of insulin-like grwoth factor-I and-II synthesis and regulation in rat fibroblasts. Nature 302: 150–153; 1983.

    Article  PubMed  CAS  Google Scholar 

  4. Rotwein, P.; Pollock, K. M.; Watson, M., et al. Insulin-like growth factor gene expression during rat embryonic development. Endocrinology 121: 2141–2144; 1987.

    Article  PubMed  CAS  Google Scholar 

  5. DeLarco, J. E.; Todaro, G. J. A human fibrosarcoma cell line producing multiplication stimulating activity (MSA)-related peptides. Nature 272: 356–358; 1978.

    Article  CAS  Google Scholar 

  6. Nagarajan, L.; Anderson, W. B.; Nissley, S. P., et al. Production of insulin-like growth factor-II (MSA) by endocrine-like cells derived from embryonal carcinoma cells: Possible mediator of embryonic cell growth. J. Cell Physiol. 124: 199–206; 1985

    Article  PubMed  CAS  Google Scholar 

  7. Reeve, A. E.; Eccles, M. R.; Wilkins, R. J., et al. Expression of insulin-like growth factor-II transcripts in Wilms' tumour. Nature 317: 258–260; 1985.

    Article  PubMed  CAS  Google Scholar 

  8. Scott, J.; Cowell, J.; Robertson, M. E., et al. Insulin-like growth factor-II gene expression in Wilms' tumour and embryonic tissues. Nature 317: 260–262; 1985.

    Article  PubMed  CAS  Google Scholar 

  9. Isaacs, J. T.; Isaacs, W. B.; Feitz, W. F. J., et al. Establishment and characterization of seven Dunning rat prostatic cancer cell lines and their use in developing methods for predicting metastatic abilities of prostate cancers. The Prostate 9: 261–281. 1986.

    Article  PubMed  CAS  Google Scholar 

  10. Daughaday, W. H. Radioligand assays for insulin-like growth factor II. “Methods in Enzymology” (In: Barnes, D.; Sirbasku, D. A., eds.) vol. 146: 248–259; 1987.

  11. Tanaka, H.; Nishikawa, K.; Yamada, Y., et al. (1985) in “Proceedings of the International Symposium on Growth and Differentiation of Cells in Defined Environment held in Fukuoka, Japan on September 2–6, 1984” (In: Murakami, H.; Yamane, I.; Barnes, D. W., et al., eds.) p. 354. Springer-Verlag, Berlin.

    Google Scholar 

  12. Matuo, Y.; Nishi, N.; Muguruma, Y., et al. Stabilization of fibroblast growth factors by a non-cytotoxic zwitterionic detergent, 3-[(3-cholamidopropyl)dimethylammonio]-1-propane sulfonate (CHAPS). In Vitro Cell. Develop. Biol. 24: 477–480; 1988.

    Article  CAS  Google Scholar 

  13. Kato, Y.; Watanebe, R.; Hiraki, Y. et al. Selective stimulation of sulfated glycosaminoglycan synthesis by multiplicationstimulating activity, cartilage-derived factor and bone-derived growth factor: Comparison of their actions on cultured chondrocytes with those of fibroblast growth factor and Rhodamine fibrosarcoma-derived growth factor. Biochim. Biophys. Acta 716: 232–239; 1982.

    PubMed  CAS  Google Scholar 

  14. Stamatoglou, S.; Keller, J. M. Correlation between cell substrate attachment in vitro and cell surface heparan sulfate affinity for fibronectin and collagen. J. Cell Biol. 96: 1820–1823; 1983.

    Article  PubMed  CAS  Google Scholar 

  15. Forrester, J. V.; Wilkinson, P. C. Inhibition of leukocyte locomotion by hyaluronic acid. J. Cell Sci. 48: 315–331; 1981.

    PubMed  CAS  Google Scholar 

  16. Majack, R. A.; Clowes, A. W. Inhibition of vascular smooth muscle cell migration by heparin-like glycosaminoglycans. J. Cell Physiol. 118: 253–256; 1984.

    Article  PubMed  CAS  Google Scholar 

  17. Toole, B. P. Glycosaminoglycans in morphogenesis. In: “Cell Biology of Extracellular Matrix’ (Hey, E. D., ed.), New York: Plenum. 1981: 259–294.

    Google Scholar 

  18. Kujaawa, M. J.; Tepperman, K. Culturing chick muscle cells on glycosaminoglycan substrates: Attachment and differentiation. Dev. Biol. 99: 277–286; 1983.

    Article  Google Scholar 

  19. Castellot, J. J., Jr.; Addonizio, M. L.; Rosenberg, R., et al. Cultured endothelial cells produce a heparin like inhibitor of smooth muscle cell growth. J. Cell Biol. 90: 372–379; 1981.

    Article  PubMed  CAS  Google Scholar 

  20. Castellot, J. J., Jr.; Favreau, L. V.; Karnovsky, M. J., et al. Inhibition of vascular smooth muscle cell growth by endothelial cell-derived heparin. Possible role of a platelet endoglycosidase. J. Biol. Chem. 257: 11256–11260; 1982.

    PubMed  CAS  Google Scholar 

  21. Clowes, A. W.; Karnovsky, M. J. Suppression by heparin of smooth muscle cell proliferation in injured arteries. Nature 265: 625–626; 1977.

    Article  PubMed  CAS  Google Scholar 

  22. Kawakami, H.; Terayama, H. Liver plasma membranes and proteoglycans prepared thereform inhibit the growth of hepatoma cells in vitro. Biochim. Biophys. Acta. 646: 161–168; 1981.

    Article  PubMed  CAS  Google Scholar 

  23. Matuoka, K.; Mitsui, Y. Involvement of cell surface heparan sulfate in the density-dependent inhibition of cell proliferation. Cell Struct. Funct. 6: 23–33; 1981.

    Article  CAS  Google Scholar 

  24. Ohnishi, T.; Ohshima, E.; Ohtsuka, M. Effect of liver cell coat acid mucopolysaccharides on the appearance of densitydependent inhibition in hepatoma cell growth. Exp. Cell Res. 93: 136–142; 1975.

    Article  PubMed  CAS  Google Scholar 

  25. Orlidge, A.; D'Amore, P. A. Cell specific effects of glycosaminoglycans on the attachment and proliferation of vascular wall components. Microvasc. Res. 31: 41–53; 1986.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Matuo, Y., Nishi, N., Tanaka, H. et al. Production of IGF-II-related peptide by an anaplastic cells line (AT-3) established from the dunning prostatic carcinoma of rats. In Vitro Cell Dev Biol 24, 1053–1056 (1988). https://doi.org/10.1007/BF02620881

Download citation

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02620881

Key words

Navigation