Skip to main content
Log in

HIG-82: An established cell line from rabbit periarticular soft tissue, which retains the “activatable” phenotype

  • Regular Papers
  • Published:
In Vitro Cellular & Developmental Biology Aims and scope Submit manuscript

Summary

We have isolated a continuous cell line from soft tissue lining the knee joints of rabbits. Designated HIG-82, this line was produced by spontaneous establishment of an aging, late-passage culture of primary cells. Like unpassaged, primary cells, HIG-82 cells can be activated by a number of stimuli, including phorbol myristate acetate (PMA), interleukin-1 (IL-1), and the endocytosis of latex beads. Activated cells secrete collagenase, gelatinase, caseinase (stromelysin), and prostaglandin E2 (PGE2) into their culture medium. Pseudodiploid, HIG-82 cells combine a high plating efficiency with a doubling time of approximately 24 h. As primary tissue of this origin is difficult to obtain in large quantities and shows cellular heterogeneity, the HIG-82 cell line should facilitate research into the biology and biochemistry of the fibroblastic cells that line the diarthrodial joints of mammals. Such cells are likely to be important in the pathophysiology of various arthritides.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Barland, P.; Novikoff, A. B.; Hamerman, D. Electron microscopy of the human synovial membrane. J. Cell Biol. 14:207–220; 1962.

    Article  PubMed  CAS  Google Scholar 

  2. Barratt, M. E. J.; Fell, H. B.; Coombs, R. A. A., et al. The pig synovium. II. Some properties of isolated intimal cells. J. Anat. 123:47–66; 1977.

    PubMed  CAS  Google Scholar 

  3. Boniface, R. J.; Cain, P. R.; Evans, C. H. Articular responses to purified cartilage proteoglycans. Arthritis Rheum. 31:258–266; 1988.

    Article  PubMed  CAS  Google Scholar 

  4. Brinckerhoff, C. E.; Harris, E. D. Collagenase production by cultures containing multinucleated cells derived from synovial fibroblasts. Arthritis Rheum. 21:745–753; 1978.

    Article  PubMed  CAS  Google Scholar 

  5. Brinckerhoff, C. E.; McMillan, R. M.; Fahey, J. V., et al. Collagenase production by synovial fibroblasts treated with phorbol myristate acetate. Arthritis Rheum. 22:1109–1116; 1979.

    Article  PubMed  CAS  Google Scholar 

  6. Brinckerhoff, C. E.; Gross, R. H.; Nagase, H., et al. Increased level of translatable collagenase messenger ribonucleic acid in rabbit synovial fibroblasts treated with phorbol myristate acetate or crystals of monosodium urate monohydrate. Biochemistry 21:2674–2697; 1982.

    Article  PubMed  CAS  Google Scholar 

  7. Brinckerhoff, C. E.; Nagel, J. E. Collagenase production by cloned populations of rabbit synovial fibroblasts. Collagen Res. 5:433–444; 1981.

    Google Scholar 

  8. Clarris, B. J.; Fraser, J. R. E. Relationship between chromosomal changes and alterations in the biochemistry of a strain of human synovial cells during its life history in vitro. Ann. Rheum. Dis. 17:599–603; 1968.

    Google Scholar 

  9. Clarris, B. J.; Leizer, T.; Fraser, J. R. E., et al. Diverse morphological responses of normal human synovial fibroblasts to mononuclear leukocyte products: relationship to prostaglandin production and plasminogen activator activities and comparison with the effects of purified interleukin 1. Rheumatol. Int. 7:35–41; 1987.

    Article  PubMed  CAS  Google Scholar 

  10. Dayer, J. M.; Krane, S. M.; Russell, R. G. G., et al. Production of collagenase and prostaglandins by isolated adherent rheumatoid synovial cells. Proc. Natl. Acad. Sci. USA 73:945–949; 1976.

    Article  PubMed  CAS  Google Scholar 

  11. Dayer, J. M.; DeRochemonteix, B.; Burrus, B., et al. Human recombinant interleukin-1 stimulates collagenase and prostaglandin E2 production by human synovial cells. J. Clin. Invest. 77:645–648; 1986.

    Article  PubMed  CAS  Google Scholar 

  12. Dominice, J.; Levasseur, C.; Larno, S., et al. Age-related changes in rabbit articular chondrocytes. Mech. Ageing Dev. 37:231–240; 1986.

    Article  PubMed  Google Scholar 

  13. Evans, C. H.; Georgescu, H. I. Observations on the senescence of cells derived from articular cartilage. Mech. Ageing Dev. 22:179–191; 1983.

    Article  PubMed  CAS  Google Scholar 

  14. Evans, C. H.; Van Gansen, P.; Rasson, I. Transcription in early and late passage embryonic mouse fibroblasts in primary culture: a correlated biochemical, autoradiographical and ultrastructural study. Biol. Cellul. 33:117–128; 1978.

    Google Scholar 

  15. Evans, C. H.; Mears, D. C.; Cosgrove, J. L. Release of neutral proteinases from mononuclear phagocytes and synovial cells in response to cartilaginous wear particles in vitro. Biochim. Biophys. Acta 677:287–294; 1981.

    PubMed  CAS  Google Scholar 

  16. Evans, C. H.; Mazzocchi, R. A.; Nelson, D. D., et al. Experimental arthritis induced by intraarticular injection of allogenic cartilagenous particles into rabbit knees. Arthritis Rheum. 27:200–207; 1984.

    Article  PubMed  CAS  Google Scholar 

  17. Evans, C. H.; Georgescu, H. I.; Mendelow, D., et al. Modulation of chondrocyte metabolism by cytokines produced by a synovial cell line. In: Sen, A.; Thornhill, T., eds. Development and diseases of cartilage and bone matrix. New York: Alan Liss; 1987:319–329.

    Google Scholar 

  18. Fell, H. B. Synoviocytes. J. Clin. Pathol. 31 Suppl. 12:14–24; 1978.

    Google Scholar 

  19. Fell, H. B.; Glauert, A. M.; Barratt, M. E. J., et al. The pig synovium. I. The intact synoviumin vivo and in organ culture. J. Anat. 122:663–680; 1976.

    PubMed  CAS  Google Scholar 

  20. Gadher, S. H.; Woolley, D. E. Comparative studies of adherent rheumatoid synovial cells in primary culture: characterization of the dendritic (stellate) cell. Rheumatol. Int. 7:13–22; 1987.

    Article  PubMed  CAS  Google Scholar 

  21. Ghadially, F. H. The articular territory of the reticuloendothelial system. Ultrastruct. Pathol. 1:249–264; 1980.

    PubMed  CAS  Google Scholar 

  22. Ghadially, F. H.; Rov, S. Ultrastructure of synovial joints in health and disease. London: Butterworth; 1969.

    Google Scholar 

  23. Gross, R. H.; Sheldon, L. A.; Fletcher, C. F., et al. Isolation of a collagenase cDNA clone and measurement of changing collagenase mRNA levels during induction in rabbits. Proc. Natl. Acad. Sci. USA 81:1981–1985; 1984.

    Article  PubMed  CAS  Google Scholar 

  24. Hasselbacher, P. Stimulation of synovial fibroblasts by calcium oxalate and monosodium urate monohydrate. J. Lab. Clin. Med. 100:977–985; 1982.

    PubMed  CAS  Google Scholar 

  25. Hayflick, L. The limited in vitro lifetime of human diploid cell strains. Exp. Cell Res. 37:614–636; 1965.

    Article  PubMed  CAS  Google Scholar 

  26. Land, H.; Parada, L.; Weinberg, R. A. Tumorigenic conversion of primary embryo fibroblasts requires at least two cooperating oncogenes. Nature 304:596–602; 1983.

    Article  PubMed  CAS  Google Scholar 

  27. Lin, C. W.; Phillips, S. L.; Brinckerhoff, C. E., et al. Induction of collagenase mRNA in lapine articular chondrocytes by synovial factors and interleukin-1. Arch. Biochem. Biophys. 261:351–354; 1988.

    Article  Google Scholar 

  28. Lowry, O. H.; Rosebrough, N. J.; Farr, A. L., et al. Protein measurement with folic phenol reagent. J. Biol. Chem. 193:265–275; 1951.

    PubMed  CAS  Google Scholar 

  29. Martin, G. M.; Sprague, C. A.; Epstein, C. J. Replicative lifespan of cultivated human cells. Effects of donor's age, tissue and genotype. Lab. Invest. 23:868–82; 1970.

    Google Scholar 

  30. Newbold, R. F.; Overell, R. W. Fibroblast immortality is a prerequisite for transformation by EJc-Ha-ras oncogene. Nature 304:648–651; 1983.

    Article  PubMed  CAS  Google Scholar 

  31. Newbold, R. F.; Overell, R. W.; Connell, J. R. Induction of immortality is an early event in malignant transformation of mammalian cells by carcinogens. Nature 299:633–635; 1982.

    Article  PubMed  CAS  Google Scholar 

  32. Sack, G. H. Human cell transformation by simian virus 40—a review. In Vitro 17:1–17; 1981.

    Article  PubMed  CAS  Google Scholar 

  33. Todaro, G. J.; Green, H. Quantitative studies on the growth of mouse embryo cells in culture and their development into established lines. J. Cell Biol. 17:299–312; 1963.

    Article  PubMed  CAS  Google Scholar 

  34. Watanabe, S.; Georgescu, H. I.; Mendelow, D., et al. Chondrocyte activation in response to factor(s) produced by a continuous line of lapine synovial fibroblasts. Exp. Cell Res. 167:218–226; 1986.

    Article  PubMed  CAS  Google Scholar 

  35. Werb, Z.; Burleigh, M. C. A specific collagenase from rabbit fibroblasts in monolayer culture. Biochem. J. 137:373–385; 1974.

    PubMed  CAS  Google Scholar 

  36. Werb, Z.; Reynolds, J. J. Stimulation by endocytosis of the secretion of collagenase and neutral proteinases from rabbit synovial fibroblasts. J. Exp. Med. 140:1482–1497; 1974.

    Article  PubMed  CAS  Google Scholar 

  37. Woolley, D. E.; Harris, E. D.; Mainardi, C. L., et al. Collagenase immunolocalization in cultures of rheumatoid synovial cells. Science 200:773–775; 1978.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

This work was supported, in part, by the Veteran's Administration, Washington, DC, and by grants AR36891 and AM07552 from the National Institutes of Health, Bethesda, MD.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Georgescu, H.I., Mendelow, D. & Evans, C.H. HIG-82: An established cell line from rabbit periarticular soft tissue, which retains the “activatable” phenotype. In Vitro Cell Dev Biol 24, 1015–1022 (1988). https://doi.org/10.1007/BF02620875

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02620875

Key words

Navigation