Skip to main content
Log in

The growth and morphology of FRTL-5 thyroid epithelial cells grown as multicellular spheroids in vitro

  • Toxicology
  • Published:
In Vitro Cellular & Developmental Biology Aims and scope Submit manuscript

Summary

FRTL-5 cells, a diploid line of differentiated rat thyroid epithelial cells, have been grown as multicellular spheroids in spinner culture. Spheroids were initiated by seeding FRTL-5 cells either into Lab-Tek dishes or culture flasks with a 0.5% agar base. Thyroid stimulating hormone (TSH, >1.0 mU/ml) was required for initial cell aggregation and spheroid growth. After 1 wk cellular aggregates were transferred to suspension culture in spinner flasks. As with FRTL-5 monolayer cultures, continued spheroid growth required the addition of TSH to the culture medium. The most unique characteristic of the FRTL-5 spheroids was the development of central lumina similar to thyroid follicles in vivo. Follicular structures were absent from spheroids not stimulated with TSH. In the presence of TSH epithelial cells seem metabolically active with morphological evidence of biosynthesis of thyroglobulin-like material and basal laminar-like components. In contrast, all evidence of cellular metabolic activity is absent from cells in spheroids maintained in the absence of TSH. Thus, nontransformed FRTL-5 cells grown as three-dimensional multicellular spheroids responded to hormonal manipulation in a manner comparable to follicular epithelial cells in vivo. This spheroid model might therefore prove to be a very effective tool for investigating aspects of thyroid physiology and pathology in vitro.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Ambesi-Impiombato, F. S.; Parks, L. A. M.; Coon, H. G. Culture of hormone-dependent functional epithelial cells from rat thyroids. Proc. Natl. Acad. Sci. USA 77:3455–3459; 1980.

    Article  PubMed  CAS  Google Scholar 

  2. Ambesi-Impiombato, F. S.; Picone, R.; Tramontano, D. Influence of hormones and serum on growth and differentiation of the thyroid cell strain FRTL. In: Sato, G. H.; Pardee, A.; Sirbasku, D. A., eds. Growth of cells in hormonally-defined media. Cold Spring Harbor Symposium on Cell Proliferation. Cold Spring Harbor, NY: Cold Spring Harbor Laboratory; 1982:483–492.

    Google Scholar 

  3. Bissell, M. J.; Hall, H. G.; Parry, G. How does the extracellular matrix direct gene expression. J. Theor. Biol. 99:31–68; 1982.

    Article  PubMed  CAS  Google Scholar 

  4. Chambard, M.; Garion, J.; Mauchamp, J. Influence of collagen gel on the orientation of epithelial cell polarity: follicle formation from isolated thyroid cells and from preformed monolayers. J. Cell Biol. 91:157–166; 1981.

    Article  PubMed  CAS  Google Scholar 

  5. Denef, J. F.; Bjorkman, U.; Ekholm, R. Structural and functional characteristics of isolated thyroid follicles. J. Ultrastruct. Res. 71:185–202; 1980.

    Article  PubMed  CAS  Google Scholar 

  6. Dertinger, H.; Guichard, M.; Malaise, E. P. Relationship between intercellular communication and radiosenitivity of human tumor xenografts Eur. J. Cancer Clin. Oncol. 20:561–566; 1984.

    Article  PubMed  CAS  Google Scholar 

  7. Dertinger, H.; Hulser, D. F. Intercellular communication in spheroids. Recent Results Cancer Res. 95:67–83; 1984.

    PubMed  CAS  Google Scholar 

  8. Dickson, J. H.; Hovsepian, S.; Fayet, G., et al. Follicle formation and iodide metabolism in cultures of human thyroid cells. J. Endocrinol. 90:113–124; 1981.

    Article  PubMed  CAS  Google Scholar 

  9. Durand, R. E.; Olive, P. L. Influence of cell-cell interactions in multicell V-79 spheroids on cell survival, DNA repair and mutagenesis after ionizing radiation. Stud. Biophys. 76:185–194; 1979.

    CAS  Google Scholar 

  10. Durand, R. E.; Sutherland, R. M. Effects of intercellular contact on the repair or radiation damage. Exp. Cell Res. 71:75–80; 1972.

    Article  PubMed  CAS  Google Scholar 

  11. Fayet, G.; Hovsepian, S.; Dickson, J. G., et al. Reorganization of porcine thyroid cells into functional follicles in a chemically defined, serum- and thyrotropin-free medium. J. Cell Biol. 93:479–488; 1982.

    Article  PubMed  CAS  Google Scholar 

  12. Garbi, C.; Wollman, S. H. Basal lamina formation on thyroid epithelia in separated follicles in suspension culture. J. Cell Biol. 94:489–492; 1982.

    Article  PubMed  CAS  Google Scholar 

  13. Giraud, A.; Fayer, G.; Lissitzky, S. Thyrotropin-induced aggregation-promoting factors of adult cultured thyroid cells. Exp. Cell Res. 87:359–364; 1974.

    Article  PubMed  CAS  Google Scholar 

  14. Gould, M. N.; Clifton, K. H. Evidence for a unique in situ component of the repair of radiation damage. Radiat. Res. 77:149–155; 1979.

    Article  PubMed  CAS  Google Scholar 

  15. Hall, H. G.; Farson, D. A.; Bissell, M. J. Lumen formation by epithelial cell lines in response to collagen overlay: a morphogenetic model in culture. Proc. Natl. Acad. Sci. USA 79:4672–4676; 1982.

    Article  PubMed  CAS  Google Scholar 

  16. Inoue, K.; Horiuchi, R.; Knodo, Y. Effect of thyrotropin on cell orientation and follicle reconstruction in rotated suspension culture of hog thyroid cells. Endocrinology 107:1162–1168; 1980.

    PubMed  CAS  Google Scholar 

  17. Jirtle, R. L.; McLain, J. R.; Strom, S. C., et al. Repair of radiation damage in non-cycling parenchymal hepatocytes. Br. J. Radiol. 55:847–851; 1982.

    Article  PubMed  CAS  Google Scholar 

  18. Mauchamp, J.; Margotat, A.; Chambard, M., et al. Polarity of three-dimensional structures derived from isolated hog thyroid cells in primary culture. Cell Tissue Res. 204:417–430; 1979.

    Article  PubMed  CAS  Google Scholar 

  19. Mulcahy, R. T.; Gould, M. N.; Clifton, K. H. Survival of thyroid cells: in vivo irradiation and in situ repair. Radiat. Res. 84:523–528; 1981.

    Article  Google Scholar 

  20. Nederman, T.; Norling, B.; Glimelius, B., et al. Demonstration of an extracellular matrix in multicellular tumor spheroids. Cancer Res. 44:3090–3097; 1984.

    PubMed  CAS  Google Scholar 

  21. Nitsch, L.; Wollman, S. H. Suspension culture of separated follicles consisting of differentiated thyroid epithelial cells. Proc. Natl. Acad. Sci. USA 77:472–476; 1980.

    Article  PubMed  CAS  Google Scholar 

  22. Tofilon, P. J.; Buckley, N.; Deen, D. F. Effect of cell-cell interactions on drug sensitivity and growth of drug-sensitive and—resistant tumor cells in spheroids. Science 226:862–864; 1984.

    Article  PubMed  CAS  Google Scholar 

  23. Wigle, J. C.; Freyer, J. P.; Sutherland, R. M. Use of a sedimentation column to obtain uniformly sized populations of multicell spheroids. In Vitro 19:361–366; 1983.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

This work was supported by Grant CA-11198 and CA-20329 awarded by the National Institutes of Health, and a Biomedical Research Support Grant awarded to R. T. Mulcahy.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mulcahy, R.T., Rosenkrans, W.A., Penney, D.P. et al. The growth and morphology of FRTL-5 thyroid epithelial cells grown as multicellular spheroids in vitro. In Vitro Cell Dev Biol 21, 513–520 (1985). https://doi.org/10.1007/BF02620844

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02620844

Key words

Navigation