Skip to main content
Log in

Characterization of freeze-thaw induced ultrastructural damage to endothelial cells in vitro

  • Published:
In Vitro Aims and scope Submit manuscript

Summary

The pathophysiology of endothelial cells is important to a variety of vascular conditions including coagulation and hemostasis resulting from clinical frostbite. Use of an in vitro model system demonstrated that when bovine endothelial cells were frozen at 1°C or 20°C/min and thawed immediately (20°C/min), a variety of ultrastructural alterations occurred. Membraneous structures were most extensively damaged, with mitochondria the most sensitive organelle. Low amplitude mitochondrial swelling, first evident at 0°C, progressed to high amplitude swelling by −10°C (frozen). In addition, the rough endoplasmic reticulum was dilated and formed large vesicles with a homogeneous matrix. Nuclear changes first occurred at −15°C. These included separation and distortion of the nuclear membrane, changes in chromatin distribution, and disruption of the nucleolus. Scanning electron microscopy revealed perforated plasma membranes in some cells at −10°C (frozen) and in most cells by −20°C. Cultures frozen at 20°C/min revealed mostly the same ultrastructural damage noted at 1°C/min except a higher percentage of cells exhibited alterations. Data from the recovery index and lactic dehydrogenase (LDH) release correlated well with observed ultrastructural changes. Early swelling of mitochondria and dilation of rough endoplasmic reticulum was not lethal in the absence of freezing. Increased swelling in cytoplasmic organelles coupled with nuclear alterations at −15°C resulted in a decreased survival rate and release of significant quantities of LDH by −20°C. No unique morphological changes were temperature specific, but the total number of cells that displayed alterations increased as temperature decreased.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Bangs, C. C.; Boswick, J. A.; Hamlet, M. P.; Sumner, D. S.; Weatherley-White, R. C. A.; Mills, W. J. When your aptient suffers frostbite. Patient Care 11: 132–157; 1977.

    Google Scholar 

  2. Bunting, S.; Moncada, S.; Vane, J. R. Antithrombotic properties of vascular endothelium. Lancet 2: 1075–1076; 1977.

    Article  PubMed  CAS  Google Scholar 

  3. Eskin, S. G.; Sybers, H. D.; Trevino, L.; Lie, J. T.; Chimoskey, J. E. Comparison of tissuecultured bovine endothelial cells from aorta and saphenous vein. In Vitro 14: 903–910; 1978.

    Article  PubMed  CAS  Google Scholar 

  4. Ghadially, F. N. ed. Ultrastructural pathology of the cell. London: Butterworths; 1975: 543.

    Google Scholar 

  5. Gimbrone, M. A. Culture of vascular endothelium. Prog. Hemost. Thromb. 3: 1–28; 1976.

    PubMed  Google Scholar 

  6. Hansen, I. A.; Nossal, P. M. Morphological and biochemical effects of freezing on yeast cells. Biochim. Biophys. Acta 16: 502–512; 1955.

    Article  PubMed  CAS  Google Scholar 

  7. Harris, L. W.; Griffiths, J. B. An assessment of methods used for measuring the recovery of mammalian cells from freezing and thawing. Cryobiology 11: 80–84; 1974.

    Article  PubMed  CAS  Google Scholar 

  8. Heard, B. E. The histological appearances of some normal tissues at low temperatures. Br. J. Surg. 42: 430–437; 1955.

    Article  PubMed  CAS  Google Scholar 

  9. Heard, B. E. Nuclear crystals in slowly-frozen tissues at very low temperatures. Br. J. Surg. 42: 659–663; 1955.

    Article  PubMed  CAS  Google Scholar 

  10. Hoyer, L. W.; DeLos Santos, R. P.; Hoyer, J. R. Antihemophilic factor antigen: Localization in endothelial cells by immunofluorescent microscopy. J. Clin. Invest. 52: 2737–2744; 1973.

    Article  PubMed  CAS  Google Scholar 

  11. Jaffe, E. A.; Hoyer, L. W.; Nachman, R. L. Synthesis of antithemophilic factor antigen by cultured human endothelial cells. J. Clin. Invest. 52: 2557–2564; 1973.

    Google Scholar 

  12. Lovelock, J. E. The haemolysis of human red blood cells by freezing and thawing. Biochim. Biophys. Acta 10: 414–426; 1953.

    Article  PubMed  CAS  Google Scholar 

  13. Lovelock, J. E. The mechanism of the protective action of glycerol aganst haemolysis by freezing and thawing. Interactions between protective solutes and cooling and warming rates. Biochim. Biophys. Acta 11: 28–36: 1953.

    Article  PubMed  CAS  Google Scholar 

  14. Macarak, E. J.; Howard, B. V.; Kafelides, N. A. Properties of calf endothelial cells in culture Lab. Invest. 36: 62–67; 1977.

    PubMed  CAS  Google Scholar 

  15. Mason, R. G.; Sharp, D.; Chuang, H. Y. K.; Mohammad, S. F. The endothelium: roles in thrombosis and hemostasis. Arch. Pathol. Lab. Med. 101: 61–64; 1977.

    PubMed  CAS  Google Scholar 

  16. Mazur, P. Causes of injury in frozen and thawed cells. Fed. Proc. 24: S175-S182; 1965.

    PubMed  CAS  Google Scholar 

  17. Mazur, P. The role of cell membranes in the freezing of yeast and other single cells. Ann NY Acad. Sci. 125: 658–676; 1965.

    Article  PubMed  CAS  Google Scholar 

  18. Mazur, P. Theoretical and experimental effects of cooling and warming velocity on the survival of frozen and thawed cells. Cryobiology 2: 181–192; 1966.

    Article  PubMed  CAS  Google Scholar 

  19. Mazur, P. Cryobiology: The freezing of biological systems. Science 168: 939–949; 1970.

    Article  PubMed  CAS  Google Scholar 

  20. Mazur, P.; Farrant, J.; Leibo, S. P.; Chu, E. H. Y. Survival of hamster tissue culture cells after freezing and thawing. Cryobiology 6: 1–9; 1969.

    Article  PubMed  CAS  Google Scholar 

  21. McDonald, R. I.; Shepro, D.; Rosenthal, M.; Booyse, F. M. Properties of cultured endothelial cells. Ser. Haematol. 6: 469–478; 1973.

    PubMed  CAS  Google Scholar 

  22. Rabb, J. M.; Renaud, M. L.; Brandt, P. A.; Witt, C. W. Effect of freezing and thawing on the microcirculation and capillary endothelium of the hamster cheek pouch. Cryobiology 11: 508–518; 1974.

    Article  PubMed  CAS  Google Scholar 

  23. Rebhun, L. I.; Sander, G. Electron microscope studies of frozen-substituted marine eggs. II. Morphology of ice crystal-free unfertilized egges. Am. J. Anat. 130: 17–34; 1971.

    Article  PubMed  CAS  Google Scholar 

  24. Russell, W. C.; Newman, C.; Williamson, D. H. A simple cytochemical technique for demonstration of DNA in cells infected with mycoplasmas and viruses. Nature 253: 461–462; 1975.

    Article  PubMed  CAS  Google Scholar 

  25. Sabatini, D. D.; Bensch, K.; Barrnett, R. J. Cytochemistry and electron microscopy. The preservation of cellular ultrastructure and enzymatic activity by aldehyde fixation. J. Cell Biol. 17: 19–58; 1963.

    Article  PubMed  CAS  Google Scholar 

  26. Schwartz, S. M. Selection and characterization of bovine aortic endothelial cells. In Vitro 14: 966–980; 1978.

    Article  PubMed  CAS  Google Scholar 

  27. Sherman, J. K. Survival of higher animal cells after the formation and dissolution of intracellular ice. Anat. Rec. 144: 171–190; 1962.

    Article  PubMed  CAS  Google Scholar 

  28. Sherman, J. K. Freeze-thaw induced structural changes in cells. III. Experimental approach to analysis of ultrastructurla cryoinjury. J. Cryosurg. 2: 189–205; 1969.

    Google Scholar 

  29. Sherman, J. K.; Kim, K. S. Correlation of cellular ultrastructure before freezing, while frozen, and after thawing in assessing freeze-thaw induced injury. Cryobiology 4: 61–74; 1967.

    Article  PubMed  CAS  Google Scholar 

  30. Smith, A. U.; Smiles, J. Microscopic studies of mammalian tissues during cooling and rewarming from −79°C. J. R. Microsc. Soc. 73: 134–139; 1953.

    PubMed  CAS  Google Scholar 

  31. Trump, B. F.; Arstila, A. U. Cellular reaction in injury. LaVia, M. F.; Hill, R. B. eds. Principles of pathobiology, 2nd ed. New York: Oxford University Press; 1975: 9–96.

    Google Scholar 

  32. Trump, B. F.; Goldblatt, P. J.; Griffin, C. C.; Waravdekar, V. S.; Stowell, R. E. Effects of freezing and thwaing on the ultrastructure of mouse hepatic parenchymal cells. Lab. Invest. 13: 967–1002; 1964.

    PubMed  CAS  Google Scholar 

  33. Trump, B. F.; Young, D. E.; Arnold, E. A.; Stowell, R. E. Effects of freezing and thawing on the structure, chemical constitution and function of cytoplasmic structures. Fed. Proc. 24: S144–168; 1965.

    CAS  Google Scholar 

  34. Trusal, L. R.; Baker, C. J.; Guzman, A. W. Transmission and scanning electron microscopy of cell monolayers grown, on polymethylpentene cover slips. Stain, Technol. 54: 77–83; 1979.

    CAS  Google Scholar 

  35. Weibel, E. R.; Palade, G. E. New cytoplasmic components in arterial endothelia. J. Cell Biol. 23: 101–112; 1964.

    Article  PubMed  CAS  Google Scholar 

  36. Young, D. E.; Arnold, E. A.; Stowell, R. E. Effects of slow and rapid thawing on nuclear structure of rapidly frozen mouse parenchymal cells. Lab. Invest. 15: 381–402; 1966.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

The views, opinions or findings, or both, contained in this report are those of the authros and should not be construed as indicative of an official Department of the Army position, policy, or decision unless so designated by other official documentation.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Trusal, L.R., Guzman, A.W. & Baker, C.J. Characterization of freeze-thaw induced ultrastructural damage to endothelial cells in vitro. In Vitro 20, 353–364 (1984). https://doi.org/10.1007/BF02618599

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02618599

Key words

Navigation