Skip to main content
Log in

Characterization of rat liver cells transformed in culture bydl-ethionine

  • Published:
In Vitro Aims and scope Submit manuscript

Summary

A rat liver-derived epithelial cell line transformed withdl-ethionine and the corresponding control cell line were characterized according to morphological and cytochemical criteria to establish their origin from liver epithelium and to identify cellular changes due to transformation bydl-ethionine. The presence of intermediate junctions confirms the epithelial nature; glycogen accumulation and glucose-6-phosphatase activity confirm the hepatic origin of the cells. Persistent alterations resulting from ethionine transformation were variations in cell shape and size, focal multilayered growth, an increase in the nucleolar: nuclear ratio, and a reduction in the number of cells displaying a primary cilium. Hyperplasia of the inner nuclear membrane, elongation and branching of mitochondria, and a reduction in the length and frequency of cell junctions were also characteristic of the transformed cells.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Farber, E. Ethionine carcinogenesis. Adv. Cancer Res. 7: 383–474; 1963.

    Article  CAS  PubMed  Google Scholar 

  2. Smith, R. C.; Salmon, W. D. Formation of S-adenosylethionine by ethionine-treated rats. Arch. Biochem. Biophys. 111: 191–196; 1965.

    Article  PubMed  CAS  Google Scholar 

  3. Farber, E.; Shull, K. H.; Villa-Trevino, S.; Lombardi, B.; Thomas, M. Biochemical pathology of acute hepatic adenosinetriphosphate deficiency. Nature 203: 34–40; 1964.

    Article  PubMed  CAS  Google Scholar 

  4. Shull, K. H.; McConomy, J.; Vogt, M.; Castillo, A.; Farber, E. On the mechanism of induction of hepatic adenosine triphosphate deficiency by ethionine. J. Biol. Chem. 241: 5060–5070; 1966.

    PubMed  CAS  Google Scholar 

  5. Okazaki, K.; Shull, K. H.; Farber, E. Effects of ethionine on adenosine triphosphate levels and ionic composition of liver cell nuclei. J. Biol. Chem. 243: 4661–4666; 1968.

    PubMed  CAS  Google Scholar 

  6. Cox, R.; Irving, C. C. Inhibition of DNA methylation by S-adenosylethionine with the production of methyl-deficient DNA in regenerating rat liver. Cancer Res. 37: 222–225; 1977.

    PubMed  CAS  Google Scholar 

  7. Christman, J. K.; Price, P.; Pedrinam, L.; Acs, G. Correlation between hypomethylation of DNA and expression of globin genes in Friend erythroleukemia cells. Eur. J. Biochem. 81: 53–61; 1977.

    Article  PubMed  CAS  Google Scholar 

  8. Boehm, T. L. J.; Drahovsky, D. Effect of carcinogen ethionine on enzymatic methylation of DNA sequences with various degrees of repetitiveness. Eur. J. Cancer 15: 1167–1173; 1979.

    PubMed  CAS  Google Scholar 

  9. Wildenauer, D.; Gross, H. J. Methyldeficient mammalian 4S RNA: evidence for L-ethionine-induced inhibition ofN 6-dimethyladenosine synthesis in rat liver tRNA. Nucleic Acids Res. 12: 279–288; 1974.

    Article  Google Scholar 

  10. Friedman, S. Alterations of tRNA modification in mammalian systems: the effect of ethionine. Nucleic Acids Res. 4: 1853–1871; 1977.

    Article  PubMed  CAS  Google Scholar 

  11. Swann, P. F.; Peacock, A. C.; Bunting, S. Carcinogenesis and cellular injury, the effect of ethionine on ribonucleic acid synthesis in rat liver. Biochem. J. 150: 334–344; 1975.

    Google Scholar 

  12. Wolf, S. F.; Schlessinger, D. Nuclear metabolism of ribosomal RNA in growing, methionine limited, and ethionine-treated HeLa cells. Biochemistry 16: 2783–2791; 1977.

    Article  PubMed  CAS  Google Scholar 

  13. Goswami, B. B.; Sharma, O. K. Accumulation of methyl-deficient rat liver messenger ribonucleic acid on ethionine administration. Biochemistry 19: 2101–2198; 1980.

    Article  PubMed  CAS  Google Scholar 

  14. Tuck, M. T.; Cox, R. Ethionine inhibitsin vivo methylation of nuclear proteins. Carcinogenesis 3: 431–434; 1982.

    Article  PubMed  CAS  Google Scholar 

  15. Stekol, J. A.; Weiss, S.; Somerville, C. A study of the comparative metabolism of ethionine and methionine in the male and female rat. Arch. Biochem. Biophys. 100: 86–90; 1963.

    Article  PubMed  CAS  Google Scholar 

  16. Rosen, L. Ethylationin vivo of purines in rat-liver tRNA byl-ethionine. Biochem. Biophys. Res. Commun. 33: 546–550; 1968.

    Article  PubMed  CAS  Google Scholar 

  17. Ortwerth, B. J.; Novelli, G. D. Studies on the incorporation ofl-ethionine-ethyl-l-14C into the transfer RNA of rat liver. Cancer Res. 29: 380–390; 1969.

    PubMed  CAS  Google Scholar 

  18. Pegg, A. E. Studies of the ethylation of rat liver transfer ribonucleic acid after administration ofl-ethionine. Biochem. J. 128: 59–68; 1972.

    PubMed  CAS  Google Scholar 

  19. Friedman, M.; Shull, K. H.; Farber, E. Highly selectivein vivo ethylation of rat liver nuclear protein. Biochem. Biophys. Res. Commun. 34: 857–864; 1969.

    Article  PubMed  CAS  Google Scholar 

  20. Wilson, M. J.; Hatfield, D. L.; Poirier, L. A. Aminoacylation of ethionine to rat liver tRNAMet and its incorporation into protein. FEBS Lett. 128: 157–160; 1981.

    Article  PubMed  CAS  Google Scholar 

  21. Brown, J. D.; Wilson, M. J.; Poirier, L. A. Neoplastic conversion of rat liver epithelial cells in culture by ethionine and S-adenosylethionine. Carcinogenesis 4: 173–177; 1983.

    Article  PubMed  CAS  Google Scholar 

  22. Idoine, J. B.; Elliott, J. M.; Wilson, M. J.; Weisburger, E. K. Rat liver cells in culture: effects of storage, long-term culture, and transformation on some enzyme levels. In Vitro 12: 541–553; 1976.

    PubMed  CAS  Google Scholar 

  23. Moorhead, P. S.; Nowell, P. C. Chromosome cytology. Methods Med. Res. 10: 310–322; 1964.

    PubMed  CAS  Google Scholar 

  24. Coolidge, B. J.; Howard, R. M. Animal histology procedures of the pathological technology section of the National Cancer Institute. Bethesda, MD: U. S. Department of Health, Education and Welfare; 1979: 59–67; 142.

    Google Scholar 

  25. Lillie, R. D. Histopathologic techic and practical histochemistry. New York: McGraw-Hill Book Company; 1965: 312–324.

    Google Scholar 

  26. Rutenberg, A. M.; Fischbein, J. W.; Hanker, J. S.; Wasserkrug, H. L.; Seligman, A. M. Histochemical and ultrastructural demonstration of γ-glutamyl-transpeptidase activity. J. Histochem. Cytochem. 17: 517–526; 1969.

    Google Scholar 

  27. Albrecht-Buehler, G.; Bushnell, A. The ultrastructure of primary cilia in quiescent 3T3 cells. Exp. Cell Res. 126: 427–437; 1980.

    Article  PubMed  CAS  Google Scholar 

  28. Ginzburg, I.; Cornelis, P.; Giveon, D.; Littauer, U. Functionally impaired tRNA from ethionine-treated rats as detected in injectedXenopus oocytes. Nucleic Acids Res. 6: 657–672; 1979.

    Article  PubMed  CAS  Google Scholar 

  29. Borenfreund, E.; Higgins, P. J.; Steinglass, M.; Bendick, A. Properties and malignant transformation of established rat liver parenchymal cells in culture. J. Natl. Cancer Inst. 55: 375–384; 1975.

    PubMed  CAS  Google Scholar 

  30. Schaeffer, W. I.; Heintz, N. H. A diploid rat liver cell culture. IV. Malignant transformation by aflatoxin B1. In Vitro 14: 418–427; 1978.

    Article  PubMed  CAS  Google Scholar 

  31. Herring, A. S.; Raychandhur, R.; Kelley, S. P.; Iype, P. T. Repeated establishment of diploid epithelial cell cultures from normal and partially hepatomized rats. In Vitro 19: 576–588; 1983.

    Google Scholar 

  32. Yoshimura, H.; Harris, R.; Yokoyama, S.; Takahashi, S.; Sells, M. A.; Pan, S. F.; Lombardi, B. Anaplastic carcinomas in nude mice and in original donor strain rats inoculated with cultured oval cells. Am. J. Pathol. 110: 322–331; 1983.

    PubMed  CAS  Google Scholar 

  33. Tucker, R. W.; Pardee, A. B. Centriole ciliation is related to quiescence and DNA synthesis in 3T3 cells. Cell 17: 527–535; 1979.

    Article  PubMed  CAS  Google Scholar 

  34. Parry, E. W. Membrane-bounded intracellular structures in hepatocytes after exposure to sodium tetraphenyl boron. J. Pathol. 104: 210–212; 1971.

    Article  PubMed  CAS  Google Scholar 

  35. Kuhn, C. Structure of bronchio-alveolar cell carcinoma. Cancer 30: 1107–1118; 1972.

    Article  PubMed  CAS  Google Scholar 

  36. Franke, W. W.; Scherr, U. Structures and functions of the nuclear envelope. Busch, H. ed. The cell nucleus, Vol. 1. New York: Academic Press; 1974: 219–347.

    Google Scholar 

  37. Puvion, E.; Viron, A.; Bernhard, W. Unusual accumulation of ribonucleoprotein constituents in the nucleus of cultured rat liver cells after hypothermal shock. Biol. Cell. 29: 81–88; 1977.

    Google Scholar 

  38. Heine, U.; Sverak, L.; Kondratick, J.; Bonar, R. A. The behavior of HeLa-S3 cells under the influence of supranormal temperatures. J. Ultrastruct. Res. 34: 375–396; 1971.

    Article  PubMed  CAS  Google Scholar 

  39. Shinozuka, H. P.; Goldblatt, P. J.; Farber, E. The disorganization of hepatic cell nucleoli induced by ethionine and its reversal by adenine. J. Cell Biol. 36: 313–328; 1968.

    Article  PubMed  CAS  Google Scholar 

  40. Puvion, E.; Puvion-Dutilleul, F.; Leduc, E. H. The formation of nucleolar perichromatin granules. J. Ultrastruct. Res. 76: 181–190; 1981.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Heine, U.I., Wilson, M.J. & Munoz, E.F. Characterization of rat liver cells transformed in culture bydl-ethionine. In Vitro 20, 291–301 (1984). https://doi.org/10.1007/BF02618591

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02618591

Key words

Navigation