Skip to main content
Log in

Properties of Wilms' tumor line (TuWi) and pig kidney line (LLC-PK1) typical of normal kidney tubular epithelium

  • Published:
In Vitro Aims and scope Submit manuscript

Summary

Two stable epithelial-like cell lines, the pig kidney strain (LLC-PK1) and a Wilms' tumor line (TuWi), previously established in other laboratories, were found to exhibit a number of properties characteristic of kidney proximal tubular epithelium. Electron micrographs of LLC-PK1 monolayers revealed cells forming rosettes reminiscent of tubules. Numerous elongated microvilli and an amorphous basal laminar material surrounded the cell membranes. Cell junctions were located between cell membranes at regions adjacent to the patent lumens. Wilms' cells in culture were similar in appearance to the pig kidney cells; they exhibited numerous microvilli, a thin basal laminar coating on the membrane, and desmonsomes between cells. No rosette formation was evident. Neither cell line was found to produce extracellular reticulin fibers when grown in the presence ofl-ascorbic acid for 1 week. Absence of stainable reticulin in cell monolayer culture after ascorbicacid treatment has been noted only in cell lines of apparent epithelial origin. Histochemically, both lines reacted positively for activities of a number of enzymes found in high amounts in normal kidney tubular epithelium. Pig kidney cells were highly positive for γ-glutamyl transpeptidase activity and moderately active for acid phosphatase and leucine aminopeptidase activities. Wilms' tumor cells were markedly active for γ-glutamyl transpeptidase, 5′-nucleotidase, ATPase, glucose-6-phosphatase, and acid phosphatase activities. These findings in conjunction with the ultrastructural observations indicate that these two lines in culture maintain many of the properties typical of proximal kidney tubular epithelium.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Davidson, E. H. 1964. Differentiation in monolayer tissue culture cells. Adv. Genet. 12: 143–280.

    PubMed  CAS  Google Scholar 

  2. Eagle, H. 1965. Metabolic controls in cultured mammalian cells. Science 148: 42–51.

    Article  PubMed  CAS  Google Scholar 

  3. Green, H., and G. J. Todaro. 1967. The mammalian cells as differentiated microorganism. Annu. Rev. Microbiol. 21: 573–600.

    Article  Google Scholar 

  4. Wigley, C. B. 1975. Differentiated cells in vitro. Differentiation 4: 25–55.

    Article  PubMed  CAS  Google Scholar 

  5. Williams, G. M., K. S. Stromberg, and R. Kroes. 1973. Biochemical and ultrastructural alterations associated with confluent growth in cell culture of epithelial-like cells from rat liver. Lab. Invest. 29: 293–303.

    PubMed  CAS  Google Scholar 

  6. Chessebeuf, M., A. Olson, P. Bournot, J. Degres, M. Guiguet, G. Maume, B. F. Maume, B. Perissel, and P. Padieu. 1974. Long term cell culture of rat liver epithelial cells retaining some hepatic functions. Biochemistry 56: 1365–1379.

    CAS  Google Scholar 

  7. Odashima, S., J. M. Sturgess, and A. Rothstein. 1976. Studies with mature rat hepatocytes in monolayer culture. I. Propagation of isolated hepatocytes, morphological and biochemical characteristics in culture. Cell Tissue Res. 169: 167–178.

    Article  PubMed  CAS  Google Scholar 

  8. Westwood, J. C. N., I. A. Macpherson, and D. H. J. Titmuss. 1957. Transformation of normal cells in tissue culture: Its significance relative to malignancy and virus vaccine production. Br. J. Exp. Pathol. 38: 138–154.

    PubMed  CAS  Google Scholar 

  9. Gilbert, S. F., and B. R. Migeon. 1975. D-valine as a selective agent for normal human and rodent epithelial cells in culture. Cell 5: 11–17.

    Article  PubMed  CAS  Google Scholar 

  10. Hull, R. N., A. C. Dwyer, W. R. Cherry, and O. J. Tritch. 1965. Development and characteristics of the rabbit kidney cell strain LLC-RK1. Proc. Soc. Exp. Biol. Med. 118: 1054–1059.

    PubMed  CAS  Google Scholar 

  11. Motoi, M., and G. Suhara. 1974. A new cell line established from calf kidney. Acta Med. Okayama 28: 213–217.

    PubMed  CAS  Google Scholar 

  12. Madin, S. H., and N. B. Darby, Jr.. 1958. Established kidney cell lines of normal adult bovine and ovine origin. Proc. Soc. Exp. Biol. Med. 98: 574–576.

    PubMed  CAS  Google Scholar 

  13. Duc-Ngugen, H., E. N. Rosenblum, and R. F. Zeigel. 1966. Persistent infection of a rat kidney cell line with Rauscher murine leukemia virus. J. Bacteriol. 92: 1133–1140.

    Google Scholar 

  14. Williams, R. D., A. Y. Elliot, and E. E. Fraley. 1976. In vitro cultivation of human renal cell cancer I. Establishment of cells in culture. In Vitro 12: 623–627.

    PubMed  CAS  Google Scholar 

  15. Hull, R. N., W. R. Cherry, and G. W., Weaver. 1976. The origin and characteristics of a pig kidney cell strain LLC-PK1. In Vitro 12: 670–677.

    PubMed  CAS  Google Scholar 

  16. Dobrynin, Y. V. 1963. Establishment and characteristics of cell strains from some epithelial tumors of human origin. J. Nat. Cancer Inst. 31: 1173–1195.

    PubMed  CAS  Google Scholar 

  17. Williams, G. M., and J. M. Gunn. 1974. Longterm cell culture of adult rat liver epithelial cells. Exp. Cell Res. 89: 139–142.

    Article  PubMed  CAS  Google Scholar 

  18. Pap, T. 1930. Eine neue methods zur improgration des retikulums. Zentralbl. Allg. Pathol. Pathol. Anat. 47: 116–117.

    Google Scholar 

  19. Thompson, S. W., and R. D. Hunt. 1966.Selected Histochemical and Histopathological Methods. Charles C. Thomas, Springfield, Ill., pp. 615–748.

    Google Scholar 

  20. Ruttenberg, A. M., K. Hwakyu, J. W. Fischbein, J. S. Hanker, H. L. Wasserkrug and A. M. Seligman. 1969. Histochemical and ultrastructural demonstration of γ-glutamyl transpeptidase activity. J. Histochem. Cytochem. 17: 517–526.

    Google Scholar 

  21. Franks, L. M., and P. D. Wilson. 1977. Origin and ultrastructure of cells in vitro. Int. Rev. Cytol. 48: 55–139.

    Article  PubMed  CAS  Google Scholar 

  22. Berman, J., G. Stoner, C. Dawe, J. Rice, and E. Kingsbury. 1978. Histochemical demonstration of collagen fibers in ascorbic acid-fed cell cultures. In Vitro 14: 675–685.

    Article  PubMed  CAS  Google Scholar 

  23. Leighton, J., Z. Broda, L. W. Estes, and G. Justh. 1969. Secretory activity and oncogenicity of a cell line (MDCK) derived from canine kidney. Science 163: 472–473.

    Article  PubMed  CAS  Google Scholar 

  24. Owens, R. B., H. S. Smith, and A. J. Hackett. 1974. Epithelial cell cultures from normal glandular tissue of mice. J. Nat. Cancer Inst. 53: 261–269.

    PubMed  CAS  Google Scholar 

  25. Pickett, P. B., D. R. Pitelka, S. T. Hamamoto, and D. S. Misfeldt. 1975. Occluding junctions and cell behavior in primary cultures of normal and neoplastic mammary gland cells. J. Cell Biol. 66: 316–332.

    Article  PubMed  CAS  Google Scholar 

  26. Misfeldt, D. S., S. T. Hamamoto, and D. R. Pitelka. 1976. Transepithelial transport in cell culture. Proc. Nat. Acad. Sci. U.S.A. 73: 1212–1216.

    Article  CAS  Google Scholar 

  27. McGrath, C. M. 1971. Replication of mammary tumor virus in tumor cell cultures: Dependence on hormone-induced cellular organization. J. Nat. Cancer Inst. 47: 455–467.

    PubMed  CAS  Google Scholar 

  28. Hosick, H. L., and S. Nandi. 1974 Preliminary survey of hormonal influences on multicellular architecture in primary cultures of mammary carcinoma cells. J. Nat. Cancer Inst. 52: 897–902.

    PubMed  CAS  Google Scholar 

  29. Wachstein, M. 1955. Histochemical staining reactions of the normally functioning and abnormal kidney. J. Histochem. Cytochem. 3: 246–270.

    PubMed  CAS  Google Scholar 

  30. Essner, E., A. B. Novikoff, and B. Masek. 1958. Adenosinetriphosphatase and 5′-nucleotidase activities in the plasma membrane of liver cells as revealed by electron microscopy. J. Biophys. Biochem. Cytol. 4: 711–716.

    Article  PubMed  CAS  Google Scholar 

  31. Berman, J. J., C. Tong, and G. M. Williams. 1977. Differences between rat liver epithelial and fibroblast cells in sensitivity to 8-azaguanine and metabolism of purines (abstr.). In Vitro 13: 196.

    Google Scholar 

  32. Gartler, S. M. 1967. Genetic markers as tracers in cell cultures. Nat. Cancer Inst. Monogr. 26: 167–195.

    PubMed  CAS  Google Scholar 

  33. Lavappa, K. S., M. L. Macy, and J. E. Shannon. 1976. Examination of ATCC stocks for HeLa marker chromosomes in human cell lines. Nature 259: 211–213.

    Article  PubMed  CAS  Google Scholar 

  34. Nelson-Rees, W. A., and R. R. Flandermeyer. 1976. HeLa cultures defined. Science 191: 96–98.

    Article  PubMed  CAS  Google Scholar 

  35. Hatt, H. D. 1975.The American Type Culture Collection: Catalogue of Strains-II. ATCC, Rockville, Md.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Perantoni, A., Berman, J.J. Properties of Wilms' tumor line (TuWi) and pig kidney line (LLC-PK1) typical of normal kidney tubular epithelium. In Vitro 15, 446–454 (1979). https://doi.org/10.1007/BF02618414

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02618414

Key words

Navigation