Skip to main content
Log in

Quantitation of human mammary epithelial antigens in cells cultured from normal and cancerous breast tissues

  • Published:
In Vitro Aims and scope Submit manuscript

Summary

A sensitive radioimmunoassay technique was developed to quantitatite the level of human breast celltype specific antigens on cells from normal breast and from various established cell lines of breast and nonbreast origins. Polyacrylamide gel electrophoresis revealed four major proteinaceous components (150,000; 75,000; 60,000; and 48,000) in human milk fat globule membranes that were used to immunize rabbits in order to elicit antimammary epithelial cell antibody. Antisera obtained were rendered specific by abosorptions and were able to recognize three specific mammary epithelial components of the breast epithelial cell. Human mammary epithelial (HME) antigen expression was highest (1290 ng/106 cells) in normal breast epithelial cells from primary cultures of normal breasts. Lower levels (range: 955 to 330 ng/106 cells) were found in breast epithelial cells from cell lines established from cancerous breast tissue. Cells of nonbreast origins as well as fibroblasts from breast gave much lower values (less than 30 ng/106 cells). On treatment, with trypsin, of two breast epithelial cell lines (MDA-MB-157 and MCF-7) 80 to 85% of their HME antigen expression was lost, suggesting that a majority of these breast antigens reside on the cell surface.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Ceriani, R. L.; Taylor-Papadimitriou, J.; Peterson, J. A.; Brown, P. Characterization of cells cultured from early lactation milk. In Vitro 15: 356–362; 1979.

    Article  PubMed  CAS  Google Scholar 

  2. Ceriani, R. L.; Thompson, K.; Peterson, J. A.; Abraham, S. Surface differentiation antigens of human mammary epithelial cells carried on the human milk fat globule. Proc. Natl. Acad. Sci. USA 74: 582–586; 1977.

    Article  PubMed  CAS  Google Scholar 

  3. Peterson, J. A.; Buehring, G. C.; Taylor-Papadimitriou, J.; Ceriani, R. Expression of human mammary epithelial (HME) antigens in primary cultures of normal and abnormal breast tissue. Int. J. Cancer 22: 655–661; 1978.

    Article  PubMed  CAS  Google Scholar 

  4. Ceriani, R. L.; Peterson, J. A.; Blank, E. W.; Miller, S. W. Use of mammary epithelial antigens as markers in mammary neoplasia. Boelsma, E.; Rümke, Ph. eds. Applied methods in oncology. vol. 2. Amsterdam: Elsevier. In press.

  5. Peterson, J. A.; Bartholomew, J. C.; Stampfer, M.; Ceriani, R. L. Analysis of expression of human mammary epithelial (HME) antigens in normal and malignant breast cells at the single cell level by flow cytofluorimetry. Exp. Cell Biol. 49: 1–14; 1981.

    PubMed  CAS  Google Scholar 

  6. Ceriani, R. L.; Peterson, J. A. Characterization of differentiation antigens of the mouse mammary epithelial cell (MME antigens) carried on the mouse milk fat globule. Cell Differ. 7: 355–366; 1978.

    Article  PubMed  CAS  Google Scholar 

  7. Ceriani, R. L.; Peterson, J. A.; Abraham, S. Immunologic methods for the identification of cell types. II. Expression of normal mouse mammary epithelial cell antigens in mammary neoplasia. J. Natl. Cancer Inst. 61: 747–751; 1978.

    PubMed  CAS  Google Scholar 

  8. Chechik, B. E.; Madapallimattam, A.; Gelfand, E. W. Radioimmunoassay for human thymusleukemia-associated antigen. J. Natl. Cancer Inst. 62: 465–470; 1979.

    PubMed  CAS  Google Scholar 

  9. Baldwin, R. W.; Glaves, D. Deletion of liver-cell surface membrane components from aminoazodye-induced rat hepatomas. Int. J. Cancer 9: 76–85; 1972.

    Article  PubMed  CAS  Google Scholar 

  10. Schachner, M. NS-1 (Nervous system antigen 1): a glial-cell specific antigenic component of the surface membrane. Proc. Natl. Acad. Sci. USA 71: 1795–1799; 1974.

    Article  PubMed  CAS  Google Scholar 

  11. Chen, L. B. Alteration in cell surface LETS protein during myogenesis. Cell 10: 393–400; 1977.

    Article  PubMed  CAS  Google Scholar 

  12. Gorsky, Y.; Vanky, F.; Sulitzeanu, D. Isolation from patients with breast cancer of antibodies specific for antigens associated with breast cancer and other malignant diseases. Proc. Natl. Acad. Sci. USA 73: 2101–2105; 1976.

    Article  PubMed  CAS  Google Scholar 

  13. Hoffken, K.; Meredith, I. D.; Robins, R. A.; Baldwin, R. W.; Davies, C. J.; Blamey, R. W. Circulating immune complex in patients with breast cancer. Br. Med. J. 2: 218–220; 1977.

    Article  PubMed  CAS  Google Scholar 

  14. Leung, J.; Bordin, G. M.; Nakamura, R. M.; Delteer, D. H.; Edgington, T. S. Frequency of association of mammary tumor glycoprotein antigen and other markers with human breast tumors. Cancer Res. 39: 2057–2061; 1979.

    PubMed  CAS  Google Scholar 

  15. Leung, J.; Plow, E. F.; Nakamura, R. T.; Edgington, T. S. A glycoprotein set specifically associated with surface and cytosol of human breast carcinoma cells. J. Immunol. 121: 1287–1296; 1978.

    PubMed  CAS  Google Scholar 

  16. Ghosh, S. K.; Grossberg, A. L.; Kim, U.; Pressman, D. Tumor-associated organ-specific antigen characteristic of spontaneously metastatic rat mammary carcinoma. J. Natl. Cancer Inst. 62: 1229–1233; 1979.

    PubMed  CAS  Google Scholar 

  17. Ghosh, S. K.; Grossberg, A. L.; Kim, U.; Pressman, D. Identification and purification of an organ specific tumor membrane associated antigen from a spontaneously metastasizing rat mammary carcinoma. Immunochemistry 15: 345–352; 1978.

    Article  PubMed  CAS  Google Scholar 

  18. Kim, U.; Baumler, A.; Carruthers, C.; Bielat, K. Immunological escape mechanism in spontaneously metastasizing mammary tumors. Proc. Natl. Acad. Sci. USA 72: 1012–1016; 1975.

    Article  PubMed  CAS  Google Scholar 

  19. Abraham, S.; Bartley, J. C. Comparison among the metabolic characteristics of normal, preneoplastic and neoplastic mammary tissues. McKerns, K. W. ed. Hormones and cancer. New York: Academic Press; 1974: 27–73.

    Google Scholar 

  20. Langlois, A. J.; Holder, W. D., Jr.; Iglehard, J. D.; Nelson-Rees, W. A.; Wells, S. A., Jr.; Bolognesi, D. P. Morphological and biochemical properties of a new human breast cancer cell line. Cancer Res. 39: 2604–2613; 1979.

    PubMed  CAS  Google Scholar 

  21. Hackett, A. J.; Smith, H. S.; Springer, E. L.; Owens, R. B.; Nelson-Rees, W. A.; Riggs, J. L.; Gardner, M. B. Two syngeneic cell lines from human breast tissue: The aneuploid mammary epithelial (Hs578T) and the diploid myoepithelial (Hs578Bst) cell lines. J. Natl. Cancer Inst. 58: 1795–1806; 1977.

    PubMed  CAS  Google Scholar 

  22. Soule, H. D.; Vazques, J.; Long, A.; Albert, S.; Brennan, M. A human cell line from a pleural effusion derived from a breast carcinoma. J. Natl. Cancer Inst. 51: 1409–1413; 1973.

    PubMed  CAS  Google Scholar 

  23. Lasfargues, E. Y.; Ozzello, L. Cultivation of human breast carcinoma. J. Natl. Cancer Inst. 6: 1131–1147; 1958.

    Google Scholar 

  24. Young, R. K.; Cailleu, R. M.; Mackay, B.; Reeves, W. J., Jr. Establishment of epithelial cell line MDA-MB-157 from metastatic pleural effusion of human breast carcinoma. In Vitro 9: 239–245; 1974.

    Article  Google Scholar 

  25. von Kleist, S.; Chany, E.; Burtin, P.; King, J.; Fogh, J. Immunohistology of the antigenic pattern of a continuous cell line from a human colon tumor. J. Natl. Cancer Inst. 55: 555–560; 1975.

    Google Scholar 

  26. Seman, G.; Hunter, S. J.; Lukeman, J. M.; Dmoshowski, L. Establishment of a cell line (SH-4) from pleural effusion of a patient with melanoma. In Vitro 11: 205–211; 1975.

    Article  PubMed  CAS  Google Scholar 

  27. Auersperg, N. Long-term cultivation of hypodiploid human tumor cells. J. Natl. Cancer Inst. 32: 135–163; 1964.

    PubMed  CAS  Google Scholar 

  28. Owens, R. B.; Smith, H. W.; Nelson-Rees, W. A.; Springer, E. L. Epithelial cell cultures from normal and cancerous human tissues. J. Natl. Cancer Inst. 56: 843–849; 1976.

    PubMed  CAS  Google Scholar 

  29. Arnstein, P.; Taylor, D. O. N.; Nelson-Rees, W. A.; Huebner, R. J.; Lenette, E. H. Propagation of human tumors in anti-thymocyte serum-treated mice. J. Natl. Cancer Inst. 52: 71–84; 1974

    PubMed  CAS  Google Scholar 

  30. Weber, K.; Osborn, M. The reliability of molecular weight determination by dodecyl sulfate-polyacrylamide gel electrophoresis. J. Biol. Chem. 244: 4406–4412; 1969.

    PubMed  CAS  Google Scholar 

  31. Lowry, O. H.; Rosebrough, J. J.; Farr, A. L.; Randall, R. J. Protein measurements with Folin phenol reagent, J. Biol. Chem. 193: 265–275; 1951.

    PubMed  CAS  Google Scholar 

  32. Hinegardner, R. T. An improved flurometric assay for DNA. Anal. Biochem. 39: 197–201; 1971.

    Article  PubMed  CAS  Google Scholar 

  33. Greenwood, F. C.; Hunter, W. M. The preparation of131I-labeled human growth hormone of high specific radioactivity. Biochem. J. 89: 114–123; 1963.

    PubMed  CAS  Google Scholar 

  34. Kessler, S. W. Cell membrane antigen isolation with the staphylococcal protein A-antibody absorbent. J. Immunol. 117: 1482–1490; 1976.

    PubMed  CAS  Google Scholar 

  35. Keenan, T. W.; Franke, W. W.; Mather, I. H.; Morré, D. D. Endomembrane composition and function in milk formation. Larson, B. L. ed. Lactation: A comprehensive treatise, vol. 4. New York: Academic Press; 1978: 405–436.

    Google Scholar 

  36. Freudenstein, C.; Keenan, T. W.; Eigel, W. N.; Sasaki, M.; Stadler, J.; Franke, W. W. Preparation and characterization of the inner coat material associated with fat globule membranes from bovine and human milk. Exp. Cell Res. 118: 277–294; 1979.

    Article  PubMed  CAS  Google Scholar 

  37. Martel, M. B.; Dubois, P.; Got, R. Membranes des globules lipidiques du lait human. Preparation, etude morphologique et composition chimique. Biochim. Biophys. Acta 311: 565–575; 1973.

    Article  PubMed  CAS  Google Scholar 

  38. Murray, L. R.; Powell, K. M.; Sasaki, M.; Eigel, W. N.; Keenan, T. W. Composition of lectin receptor and membrane coat-associated glycoproteins of milk lipid globule membranes. Comp. Biochem. Physiol. 63B: 137–145; 1979.

    CAS  Google Scholar 

  39. Bauer, C. H.; Reutter, W. G.; Erhart, K. P.; Köttgen, E.; Gerok, W. Decrease of human serum fucosyltransferase as an indicator of successful tumor therapy. Science 201: 1232–1234; 1978.

    Article  PubMed  CAS  Google Scholar 

  40. Bernachi, R. J.; Kim, U. Concomitant elevation in serum sialtransferase activity and sialic acid content in rats with metastasizing mammary tumors. Science 195: 577–579; 1977.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

This work was Supported by Grant PTD-99 from the American Cancer Society, Grant CA19455 and CA20286 from the National Cancer Institute, and Biomedical Research Support Grant RR05467 from the National Institutes of Health. Most cells used in the present study were produced with support from National Cancer Institute Contract Y01-CP8-0500, Biological Carcinogenesis Branch, Division of Cancer Cause and Prevention, under the auspices of the Office of Naval Research and the Regents of the University of California.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sasaki, M., Peterson, J.A. & Ceriani, R.L. Quantitation of human mammary epithelial antigens in cells cultured from normal and cancerous breast tissues. In Vitro 17, 150–158 (1981). https://doi.org/10.1007/BF02618073

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02618073

Key words

Navigation