Skip to main content
Log in

Assessment of prosthetic aortic valve performance by magnetic resonance velocity imaging

  • Published:
Magnetic Resonance Materials in Physics, Biology and Medicine Aims and scope Submit manuscript

Abstract

Objectives

Magnetic resonance (MRI) velocity mapping was used to evaluate non-invasively the flow profiles of the ascending aorta in normal volunteers and in patients with an aortic (mechanical) valve prosthesis.

Background

In patients with artificial aortic valves the flow profile in the ascending aorta is severely altered. These changes have been associated with an increased risk of thrombus formation and mechanical hemolysis.

Methods

Velocity profiles were determined 30 mm distal to the aortic valve in six healthy volunteers and seven patients with aortic valve replacement (replacement within the last 2 years) using ECG triggered phase contrast MRI. Peak flow, mean flow and mean reverse flow were measured in intervals of 25 ms during the entire heart cycle. Systolic reverse flow, end-systolic closing and diastolic leakage volume were calculated for all subjects.

Results

Peak flow velocity during mid-systole was significantly higher in patients with valvular prosthesis than in normals (mean±SD, 1.9±0.4 m/s vs. 1.2±0.03 m/s,P<0.001) with a double peak and a zone of reversed flow close to the inner (left lateral) wall of the ascending aorta of the patients. Closing volume was significantly larger in patients than in controls (−3.3±1.2 ml/beat vs. −0.9±0.5 ml/beat;P<0.001). There was reverse flow during systole in valvular patients amounting to 15.7±6.7% of total cardiac output compared to 2.3±1.2% in controls (P<0.001). Diastolic mean flow was negative in patients after valve replacement but not in controls (−11.0±15.2 ml/beat vs. 6.8±3.2 ml/beat;P<0.01).

Conclusions

The following three major quantitative observations have been made in the present study: (1) Mechanical valve prostheses have an increased peak flow velocity with a systolic reverse flow at the inner (left lateral) wall of the ascending aorta. (2) A double peak flow velocity pattern can be observed in patients with bileaflet (mechanical) prosthesis. (3) The blood volume required for leaflet closure and the diastolic leakage blood volume are significantly higher for the examined bileaflet valve than for native heart valves.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Bodnar E, Yacoub M. Biologic and Bioprosthetic valves. New York: York Medical Books, 1986.

    Google Scholar 

  2. Bodnar E, Frater R. Replacement Cardiac Valves. New York: Pergamon Press, 1991.

    Google Scholar 

  3. Butchart EG, Bodnar E. Thrombosis, embolism and bleeding. UK: ICR Publishers, 1992.

    Google Scholar 

  4. Roberts WC. Choosing a substitute cardiac valve, type, size, surgeon. Am J Cardiol 1976;38:633–44.

    Article  PubMed  CAS  Google Scholar 

  5. Chandran KG, Cabell GN, Khalighi B, Chen CJ. Laser anemometry measurements of pulsatile flow past aortic valves. J Biomech 1983;16:865–73.

    Article  PubMed  CAS  Google Scholar 

  6. Chandran KG, Cabell GN, Khalighi B, Chen CJ. Pulsatile flow past aortic valve bioprosthesis in a model human aorta. J Biomech 1984;17:609–19.

    Article  PubMed  CAS  Google Scholar 

  7. Woo Y-R, Yoganathan AP. In vitro pulsatile flow velocity and turbulent shear stress measurements in the vicinity of mechanical aortic heart valve prosthesis. Life Support Syst 1985;3:283–312.

    PubMed  CAS  Google Scholar 

  8. Woo Y-R, Yoganathan AP. In vitro pulsatile flow velocity and turbulent shear stress measurements in the vicinity of mechanical mitral heart valve prosthesis. J Biomech 1986;19:39–51.

    Article  PubMed  CAS  Google Scholar 

  9. Yoganathan AP, Woo Y-R, Sung H-W, Williams FP, Franch RH, Jones M. In vitro hemodynamic characteristics of tissue bioprosthesis in the aortic position. J Thorac Cardiovasc Surg 1986;92:198–209.

    PubMed  CAS  Google Scholar 

  10. Yoganathan AP, Woo Y-R, Sung H-W. Turbulent shear stress measurements in the vicinity of aortic heart valve prosthesis. J Biomech 1986;19:433–42.

    Article  PubMed  CAS  Google Scholar 

  11. Yoganathan AP, Sung H-W, Woo Y-R. In vitro velocity and turbulence measurements in the vicinity of three new mechanical aortic heart valve prostheses. J Thorac Cardiovasc Surg 1988;95:929–39.

    PubMed  CAS  Google Scholar 

  12. Schoephoerster RT, Oynes F, Nunez G, Kapadvanjwala M, Dewanjee MK. Effects of local geometry and fluid dynamics on regional platelet deposition on artificial surfaces. Arterioscler Thromb 1993;13:1806–13.

    PubMed  CAS  Google Scholar 

  13. Tillmann W, Reul H, Herold M, Bruss KH, Van Gilse J. In-vitro wall shear stress measurements at aortic valve prosthesis. J Biomech 1984;17:263–79.

    Article  PubMed  CAS  Google Scholar 

  14. Hasenkam JM, Giersiepen M, Reul H. Three-dimensional visualization of velocity fields downstream of six mechanical aortic valves in a pulsatile flow model. J Biomech 1988;21:647–61.

    Article  PubMed  CAS  Google Scholar 

  15. Hasenkam JM, Westphal D, Nygaard H, Reul H, Giersiepen M, Stødkilde-Jørgensen H. In vitro stress measurements in the vicinity of six mechanical aortic valves using hot-film anemometry in steady-flow. J Biomech 1988;21:235–47.

    Article  PubMed  CAS  Google Scholar 

  16. Hasenkam JM, Pedersen EM, Østergaard JH, Nygaard P, Paulsen PK, Johannsen G, Schurizek BA. Velocity fields and turbulent stresses downstream of biological and mechanical aortic valve prosthesis implanted in pigs. Cardiovasc Res 1988;22:472–83.

    Article  PubMed  CAS  Google Scholar 

  17. Grigg L, Fulop J, Daniel L, Weisel R, Rakowski H. Doppler echocardiography assessment of prosthetic heart valves. Echocardiography 1990;7(2):97–114.

    PubMed  CAS  Google Scholar 

  18. Walker PG, Pedersen EM, Oyre S, Flepp L, Ringaard S, Heinrich RS, Walton SP, Hasenkam JM, Stødkilde-Jørgensen H, Yoganathan AP. Magnetic resonance velocity imaging: a new method for prosthetic heart valve study. J Heart Valve Dis 1995;4:296–307.

    PubMed  CAS  Google Scholar 

  19. Fontaine AA, Heinrich R, Walker PG, Pedersen EM, Scheidegger MB, Boesiger P, Walton SP, Yoganathan AY. Comparison of MRI and LDA velocity measurements downstream of prosthetic heart valves: Implications for in vivo assessment of prosthetic valve function. J Heart Valve Dis 1996;5:66–73.

    PubMed  CAS  Google Scholar 

  20. Paulsen PK, Hasenkam JM, Stødkilde-Jørgensen H, Albrechtsen O. Three-dimensional visualization of velocity profiles in the ascending aorta in humans with normal aortic valves and after insertion of St Jude Medical and Starr-Edwards Silastic Ball valves in the aortic position. Int J Artif Organs 1988;11(4):277–92.

    PubMed  CAS  Google Scholar 

  21. Nygaard H, Paulsen PK, Hasenkam JM, Kromann-Hansen O, Pedersen EM, Rovsing PE. Quantitation of the turbulent shear stress distribution downstream of normal, diseased and artificial aortic valves in humans. Cardiothorac Surg 1992;6:609–17.

    Article  CAS  Google Scholar 

  22. Houlind K, Eschen O, Pedersen EM, Jensen T, Hasenkam JM, Paulsen PK. Magnetic resonance imaging of blood velocity distribution around St Jude Medical aortic valves in patients. J Heart Valve Dis 1996;5:511–7.

    PubMed  CAS  Google Scholar 

  23. Kilner PJ, Yang ZY, Mohiaddin RH, Firmin DN, Longmore DB. Helical and retrograde secondary flow patterns in the aortic arch studied by three-dimensional magnetic resonance velocity mapping. Circulation 1993;88:2235–47.

    PubMed  CAS  Google Scholar 

  24. Nayler GL, Firmin DN, Longmore DB. Blood flow imaging by cine magnetic resonance imaging. J Comp Assist Tomogr 1986;12:715–22.

    Article  Google Scholar 

  25. Stahlberg F, Thomsen C, Sondergaard L, Henriksen O. Pulse sequence design for MR velocity mapping of complex flow: notes on the necessity of low echo times. Magn Reson Imaging 1994;12(8):1255–62.

    Article  PubMed  CAS  Google Scholar 

  26. Botnar R, Scheidegger MB, Boesiger P. Quantification of blood flow patterns in human vessels by magnetic resonance imaging. Technol Health Care 1996;4:97–112.

    PubMed  CAS  Google Scholar 

  27. Botnar R, Ringaard S, Hirt F, Pedersen EM, Scheidegger MB, Boesiger P. Assessment of velocity fields downstream of prosthetic heart valves by magnetic resonance imaging. in-vivo and in-vitro studies. Proceedings, Fourth Scientific Meeting, New York, Berkeley, CA, Society of Magnetic Resonance in Medicine, 1996, p. 696

    Google Scholar 

  28. Yoganathan AP. Cardiac valve prostheses. In: Bronzino JD, editor. The Biomedical Engineering Handbook. Boca Raton: CRC, 1995:1847–70.

    Google Scholar 

  29. Reisner SA, Meltzer RS. Normal values of prosthetic valve Doppler echocardiographic parameters: a review. J Am Soc Echo 1988;1:201–10.

    CAS  Google Scholar 

  30. Goldrath N, Zimes R, Vered Z. Analysis of Doppler-obtained velocity curves in functional evaluation of mechanical prosthetic valves in the mitral and aortic positions. J Am Soc Echo 1988;1:211–25.

    CAS  Google Scholar 

  31. Wiseth R, Samstad S, Rossvoll O, Torp HG, Skjaerpe T, Hatle L. Cross-sectional left ventricular outflow tract velocities before and after aortic valve replacement: a comperative study with two-dimensional Doppler ultrasound. J Am Soc Echocardiogr 1993;6:279–85.

    PubMed  CAS  Google Scholar 

  32. Spielmann RP, Schneider O, Thiele F, Heller M, Bücheler E. Appearance of poststenotic jets in MRI: dependence on flow velocity and imaging parameters. Magn Reson Imag 1991;9:67–72.

    Article  CAS  Google Scholar 

  33. Ståhlberg F, Søndergaard L, Thomsen C, Henriksen O. Quantification of complex flow using MR phase imaging-a study of parameters influencing the phase/velocity relation. Magn Reson Imag 1992;10:13–23.

    Article  Google Scholar 

  34. Urchuk SN, Plewes DB. Mechanisms of flow-induced signal loss in MR-angiography. J Magn Reson Imaging 1992;4:453–62.

    Article  Google Scholar 

  35. Botnar R, Ringgaard S, Hirt F, Pedersen EM, Scheidegger MB, Boesiger P. Assessment of velocity fields downstream of prosthetic heart valves: in-vivo and in-vitro studies. In: Proceedings, ISMRM. Fourth Annual Meeting, New York, 1996, p. 696.

  36. Kozerke S, Scheidegger MB, Pedersen EM, Boesiger P. Heart motion adapted cine phase contrast flow measurements through the aortic valvc. In: Proceedings, ISMRM, Sixth Annual Meeting, Sydney, 1998, p. 277.

  37. Chatzimavroudis GP, Walker PG, Oshinski JN, Franch RH, Pettigrew RI, Yoganathan AP. Slice location dependence of aortic regurgitation measurements with phase velocity mapping. Magn Res Med 1997;37:545–51.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to René Botnar.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Botnar, R., Nagel, E., Scheidegger, M.B. et al. Assessment of prosthetic aortic valve performance by magnetic resonance velocity imaging. MAGMA 10, 18–26 (2000). https://doi.org/10.1007/BF02613108

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02613108

Keywords

Navigation