Skip to main content
Log in

Isolation of lysine codon suppressors inEscherichia coli

  • Published:
Current Microbiology Aims and scope Submit manuscript

Abstract

Starting with anEscherichia coli strain containingglyT56, a glycine transfer RNA suppressor of the arginine codons AGA and AGG, and atrpA mutant containing lysine at position 211 of the tryptophan synthetase alpha chain, we have isolated AAG-suppressors that fall into two classes. In class 1 are dominant suppressors that arose with the simultaneous loss ofglyT56 activity. They are approximately 50% cotransducible withargE, as isglyT, and appear to be derived fromglyT56. Class 2 suppressors, located betweenpurE andtrp on theE. coli map, are not near any glycine tRNA genes, and may represent novel missense suppressors.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Literature Cited

  1. Allen, M. K., Yanofsky, C. 1963. A biochemical and genetic study of reversion with the A-gene A-protein system ofEscherichia coli tryptophan synthetase. Genetics48:1065–1083.

    PubMed  CAS  Google Scholar 

  2. Bachmann, B. J., Low, K. B., Taylor, A. L. 1976. Recalibrated linkage map ofEscherichia coli K-12. Bacteriological Reviews40:116–167.

    PubMed  CAS  Google Scholar 

  3. Buckingham, R. H., Kurland, C. G. 1977. Codon specificity of UGA suppressor tRNAtro fromEscherichia coli. Proceedings of the National Academy of Sciences of the United States of America74:5496–5498.

    Article  PubMed  CAS  Google Scholar 

  4. Carbon, J., Berg, P., Yanofsky, C. 1966. Missense suppression due to a genetically altered tRNA. Cold Spring Harbor Symposium on Quantitative Biology31:487–497.

    CAS  Google Scholar 

  5. Carbon, J., Berg, P., Yanofsky, C. 1966. Studies on missense suppression of the trytophan synthetase A-protein mutant A36. Proceedings of the National Academy of Sciences of the United States of America56:764–771.

    Article  PubMed  CAS  Google Scholar 

  6. Carbon, J., Squires, C., Hill, C. W. 1970. Glycine transfer RNA ofEscherichia coli. II. Impaired GGA-recognition in strains containing a genetically altered transfer RNA: reversal by a secondary suppressor mutation. Journal of Molecular Biology52:571–584.

    Article  PubMed  CAS  Google Scholar 

  7. Chang, S., Carbon, J. 1975. The nucleotide sequence of a precursor to the glycine- and threonine-specific transfer ribonucleic acids ofEscherichia coli. Journal of Biological Chemistry250:5542–5555.

    PubMed  CAS  Google Scholar 

  8. Clarke, L., Carbon, J. 1974. The nucleotide sequence of a threonine transfer ribonucleic acid fromEscherichia coli. Journal of Biological Chemistry249:6874–6885.

    PubMed  CAS  Google Scholar 

  9. Fredericq, P. 1969. The recombination of colicinogenic factors with other episomes and plasmids, pp. 163–174. In: Wolstenhome, G. E. W., O'Connor, M. (eds.), Bacterial plasmids and episomes. Boston: Little, Brown and Co.

    Google Scholar 

  10. Hill, C. W. 1975. Informational suppression of missense mutations. Cell6:419–427.

    Article  CAS  Google Scholar 

  11. Hill, C. W., Combriato G. 1973. Genetic duplications induced at very high frequency by ultraviolet irradiation inEscherichia coli. Molecular and General Genetics127:197–214.

    Article  PubMed  CAS  Google Scholar 

  12. Hill, C. W., Foulds, J., Soll, L., Berg, P. 1969. Instability of a missense suppressor resulting from a duplication of genetic material. Journal of Molecular Biology39:563–581.

    Article  PubMed  CAS  Google Scholar 

  13. Hill, C. W., Graftstrom, R. H., Harnish, B. W., Hillman, B. S. 1977. Tandem duplications resulting from recombination between ribsomal RNA genes inEscherichia coli. Journal of Molecular Biology116:407–428.

    Article  PubMed  CAS  Google Scholar 

  14. Hill, C. W., Squires, C., Carbon, J. 1970. Glycine transfer RNA ofEscherichia coli. I. Structural genes for two glycine tRNA species. Journal of Molecular Biology52:557–569.

    Article  PubMed  CAS  Google Scholar 

  15. Ikemura, T., Ozeki, H. 1977. Gross map location ofEscherichia coli transfer RNA genes. Journal of Molecular Biology117:419–446.

    Article  PubMed  CAS  Google Scholar 

  16. Jank, P., Shindo-Okada, N., Nishimura, S., Gross, H. J. 1977. Rabbit liver tRNAval: 1. Primary structure and unsual codon recognition. Nucleic Acids Research4:1999–2008.

    Article  PubMed  CAS  Google Scholar 

  17. Kurland, C. G., Rigler, R., Ehrenberg, M., Blomberg, C. 1975. Allosteric mechanism for codon-dependent tRNA selection on ribosomes. Proceedings of the National Academy of Sciences of the United States of America72:4248–4251.

    Article  PubMed  CAS  Google Scholar 

  18. Mitra, S. K., Lustig, F., Akesson, B., Lagerkvist, V., Strid, L. 1977. Codon-anticodon recognition in the valine codon family. Journal of Biological Chemistry252:471–478.

    PubMed  CAS  Google Scholar 

  19. Murgola, E. J., Hadley, K. H., Prather, N. E. 1976. Novel forms of glycine transfer RNA informational suppressors. Federation Proceedings35:1468.

    Google Scholar 

  20. Murgola, E. J., Prather, N. E., Hadley, K. H. 1978. Variations amongglyV-derived glycine tRNA suppressors of glutamic acid codons. Journal of Bacteriology134:801–807.

    PubMed  CAS  Google Scholar 

  21. Murgola, E. J., Yanofsky, C. 1974. Suppression of glutamic acid codons by mutant glycine transfer ribonucleic acid. Journal of Bacteriology117:439–443.

    PubMed  CAS  Google Scholar 

  22. Murgola, E. J., Yanofsky, C. 1974. Selection for new amino acids at position 211 of the tryptophan synthetase α chain ofEscherichia coli. Journal of Molecular Biology86:775–784.

    Article  PubMed  CAS  Google Scholar 

  23. Murgola, E. J., Yanofsky, C. 1974. Structural interactions between amino acid residues at positions 22 and 211 in the tryptophan synthetase α chain ofEscherichia coli. Journal of Bacteriology117:444–448.

    PubMed  CAS  Google Scholar 

  24. Ostrem, D. L., Berg, P. 1970. Glycl-tRNA synthetase: An oligomeric protein containing dissimilar subunits. Proceedings of the National Academy of Sciences of the United States of America67:1967–1974.

    Article  PubMed  CAS  Google Scholar 

  25. Reid, P., Berg, P. 1968. T4 bacteriophage mutants suppressible by a missense suppressor which inserts glycine in place of arginine for the codon AGA. Journal of Virology2:905–914.

    PubMed  CAS  Google Scholar 

  26. Roberts, J. W., Carbon, J. 1974. Molecular mechanism for missense suppression inE. Coli. Nature250:412–414.

    Article  PubMed  CAS  Google Scholar 

  27. Roberts, J. W., Carbon, J. 1975. Nucleotide sequence studies of normal and genetically altered glycine transfer ribonucleic acids fromEscherichia coli. Journal of Biological Chemistry250:5530–5541.

    PubMed  CAS  Google Scholar 

  28. Squires, C., Carbon, J. 1971. Normal and mutant glycine transfer RNAs. Nature (London) New Biology233:274–277.

    CAS  Google Scholar 

  29. Squires, C., Konrad, B., Kirschbaum, J., Carbon, J. 1973. Three adjacent transfer RNA genes inEscherichia coli. Proceedings of the National Academy of Sciences of the United States of America70:438–441.

    Article  PubMed  CAS  Google Scholar 

  30. Yanofsky, C., Ito, J., Horn, V. 1966. Amino acid replacements and the genetic code. Cold Spring Harbor Symposium on Quantitative Biology31:151–162.

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hadley, K.H., Murgola, E.J. Isolation of lysine codon suppressors inEscherichia coli . Current Microbiology 1, 99–103 (1978). https://doi.org/10.1007/BF02605425

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02605425

Keywords

Navigation