Skip to main content
Log in

Ciliate evolution: The ribosomal phylogenies of the tetrahymenine ciliates

  • Published:
Journal of Molecular Evolution Aims and scope Submit manuscript

Summary

We have assembled and analyzed nucleotide sequences for several different rRNA components from tetrahymenine ciliates. These include previously published and some new 5S and 5.8S rRNAs for a total of 18 species. We also report sequences for some 30 species obtained by primer extension analysis of a region near the 5′ end of the 23S rRNAs (region 580). Phylogenetic trees have been constructed for these species, utilizing heuristics (shifting ditypic site analysis) described in a companion paper. The trees based on these sequences are consistent with each other and with those based on longer sequences of the 17S rRNA. They show the tetrahymenines to consist of a number of distinctive clusters of species. The clusters (ribosets) are homogeneous with respect to certain life history characteristics, especially the mode of mating type determination, but are inhomogeneous with respect to some morphological and life history features, such as cyst formation and adaptations to parasitism or carnivory. Using the same molecular data, we also begin to explore the relationships of the tetrahymenines to some other ciliate taxa and to some other protists.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Allen SL, Ervin PR, McLaren NC, Brand RE (1984) The 5S ribosomal RNA gene clusters inTetrahymena thermophila: strain differences, chromosomal locations, and loss during micronuclear aging. Mol Gen Genet 197:244–253

    Article  PubMed  CAS  Google Scholar 

  • Baroin A, Perasso R, Qu L-H, Brugerolle G, Bachellerie J-P, Adoutte A (1988) Partial phylogeny of the unicellular eukaryotes based on the 28S ribosomal RNA. Proc Natl Acad Sci USA 85:3474–3479

    Article  PubMed  CAS  Google Scholar 

  • Batson BS (1983)Tetrahymena dimorpha sp. nov. (Hymenostomatida: Tetrahymenidae), a new ciliate parasite of Simulidae (Diptera) with potential as a model for the study of ciliate morphogenesis. Phil Trans R Soc Lond B 301:345–363

    Google Scholar 

  • Borden D, Miller ET, Whitt GS, Nanney DL (1977) Electrophoretic analysis of evolutionary relationships inTetrahymena. Evolution 31:91–102

    Article  CAS  Google Scholar 

  • Corliss JO (1960)Tetrahymena chironomi sp. nov., a ciliate from midge larvae, and the current status of facultative parasitism in the genusTetrahymena. Parasitology 50:111–153

    Article  PubMed  CAS  Google Scholar 

  • Corliss JO (1973) History, taxonomy, ecology and evolution of species ofTetrahymena. In: Elliott AM (ed) Biology ofTetrahymena. Dowden, Hutchinson and Ross, Stroudsburg PA, pp 1–55

    Google Scholar 

  • Corliss JO (1979) The ciliated protozoa, ed 2. Pergamon Press, Elmsford NY

    Google Scholar 

  • Corliss JO, Coats DW (1976) A new cuticular cyst-producing tetrahymenid ciliate,Lambornella clarki n. sp., and the current status of ciliatosis in culicine mosquitoes. Trans Am Microsc Soc 95:725–739

    Article  Google Scholar 

  • Corliss JO, Daggett PM (1984)Paramecium aurelia andTetrahymena pyriformis: current status of the taxonomy and nomenclature of these popularly known and widely used ciliates. Protistologica 19:307–322

    Google Scholar 

  • Delihas N, Anderson J, Singhai RP (1984) Structure, function and evolution of 5S rRNAs. Nucleic Acids Res 31:161–190

    CAS  Google Scholar 

  • Egerter DE, Anderson JR, Washburn JO (1986) Dispersal of the parasitic ciliateLambornella clarki: implications for ciliates in the biological control of mosquitoes. Proc Natl Acad Sci USA 83:7335–7339

    Article  PubMed  CAS  Google Scholar 

  • Erdmann VA, Wolters J (1986) Collection of published 5S, 5.8S, and 4.5S ribosomal RNA sequences. Nucleic Acids Res 14[suppl]:r1-r59

    PubMed  CAS  Google Scholar 

  • Fitch WM, Margoliash E (1967) The construction of phylogenetic trees. Science 155:279–284

    Article  PubMed  CAS  Google Scholar 

  • Furgason WH (1940) The significant cytostomal pattern of the “Glaucoma-Colpidium group,” and a proposed new genus and species,Tetrahymena geleii. Arch Protistenkd 94:244–266

    Google Scholar 

  • Gall JG (ed) (1986) Molecular biology of ciliated protozoa. Academic Press, New York

    Google Scholar 

  • Goodwin BC, Holder N, Wylie CC (eds) (1983) Development and evolution. Cambridge University Press, Cambridge

    Google Scholar 

  • Gruchy DF (1955) The breeding system and distribution ofTetrahymena pyriformis. J Protozool 2:178–185

    Google Scholar 

  • Hassouna N, Michot B, Bachellerie J-P (1984) The complete nucleotide sequence of mouse 28S rRNA gene. Implications for the process of size increase of the large subunit rRNA in higher organisms. Nucleic Acids Res 12:3565–3583

    Article  Google Scholar 

  • Herzog M, Maroteaux L (1986) Dinoflagellate 17S rRNA sequence inferred fromthe gene sequence: evolutionary implications. Proc Natl Acad Sci USA 83:8644–8648

    Article  PubMed  CAS  Google Scholar 

  • Hori H, Osawa S (1987) Origin and evolution of organisms as deduced from 5S ribosomal RNA sequences. Mol Biol Evol 4:445–472

    PubMed  CAS  Google Scholar 

  • Karrer KM (1986) The nuclear DNAs of holotrichous ciliates. In: Gall JG (ed) The molecular biology of ciliated protozoa. Academic Press. New York, pp 85–110

    Google Scholar 

  • Kimmel AR, Gorovsky MA (1976) Numbers of 5S and tRNA genes in micro- and macronuclei inTetrahymena pyriformis. Chromosoma 54:327–337

    Article  PubMed  CAS  Google Scholar 

  • Lake JA (1988) Origin of the eukaryotic nucleus determined by rate-invariant analysis of rRNA sequences. Nature 331:184–186

    Article  PubMed  CAS  Google Scholar 

  • Lane DJ, Pace B, Olsen GJ, Stahl DA, Sogin ML, Pace RN (1985) Rapid determination of 16S ribosomal RNA sequences for phylogenetic analysis. Proc Natl Acad Sci USA 82:6955–6959

    Article  PubMed  CAS  Google Scholar 

  • McCarroll R, Olsen GJ, Stahl YD, Woese CR, Sogin ML (1983) Nucleotide sequence of theDictyostelium discoideum smallsubunit ribosomal ribonucleic acid inferred from the gene sequence: evolutionary implications. Biochemistry 22:5858–5868

    Article  CAS  Google Scholar 

  • Meyer, EB, Nanney DL (1987) Isozymes in the ciliated protozoanTetrahymena. Alan R. Liss, New York (Isozymes: current topics in biological and medical research, vol 13)

    Google Scholar 

  • Nanney DL (1980) Experimental ciliatology. John Wiley and Sons, New York

    Google Scholar 

  • Nanney DL (1985) The tangled tempos underlyingTetrahymena taxonomy. Atti Soc Toscana Sci Nat PV Mem Ser B 42:1–13

    Google Scholar 

  • Nanney DL, McCoy JW (1976) Characterization of the species of theTetrahymena pyriformis complex. Trans. Am Microsc Soc 95:664–682

    Article  PubMed  CAS  Google Scholar 

  • Nanney DL, Cooper LE, Simon EM, Whitt GS (1981) Isozymic characterization of three mating groups of theTetrahymena pyriformis complex. J Protozool 27:451–459

    Google Scholar 

  • Nanney DL, Meyer EB, Simon EM, Preparata RM (1989a) Comparison of ribosomal and isozymic phylogenies of tetrahymenine ciliates. J Protozool 36:1–8

    PubMed  CAS  Google Scholar 

  • Nanney DL, Preparata RM, Preparata FM, Meyer EB, Simon EM (1989) Shifting ditypic site analysis: heuristics for extending the phylogenetic range of nucleotide sequences in Sankoff analyses. J Mol Evol 28:451–459

    PubMed  CAS  Google Scholar 

  • Nei M, Koehn RE (1983) Evolution of genes and proteins. Sinauer Assoc., Inc., Sunderland MA

    Google Scholar 

  • Nyberg D (1981) Three new “biological” species ofTetrahymena (T. hegewischi n.sp.,T. sonneborn n. sp.,T. nipissingi n. sp.) and temperature tolerance of members of the “pyriformis” complex. J Protozool 28:65–69

    Google Scholar 

  • Preer JR Jr (1986) Surface antigens ofParamecium In: Gall JG (ed) The molecular biology of ciliated protozoa. Academic Press, New York, pp 301–339

    Google Scholar 

  • Qu LH, Michot B, Bachellerie J-P (1983) Improved methods for structure probing in large RNAs: a rapid ‘heterologous’ approach is coupled to the direct mapping of nuclease accessible sites. Application to the 5′ terminal domain of eukaryotic 28S rRNA. Nucleic Acids Res 11:5903–5920

    Article  PubMed  CAS  Google Scholar 

  • Raikov IB (1982) The protozoan nucleus: morphology and evolution. Springer-Verlag, New York

    Google Scholar 

  • Sankoff D, Kruskal JB (eds) (1983) Time warps, string edits and macromolecules: the theory and practice of sequence comparisons. Addison Wesley, Reading MA

    Google Scholar 

  • Simon EM, Meyer EB, Preparata RM (1985) New wild tetrahymenas from Southeast Asia, China, and North America, includingT. malaccensis, T asiatica, T. nanneyi, T. caudata, andT. silvana n. spp. J Protozool 22:182–189

    Google Scholar 

  • Small EB, Lynn DH (1985) Phylum Ciliophora Doflein, 1901. In: Lee JJ, Hutner SH, Bovee EC (eds) Illustrated guide to the protozoa. Society of Protozoologists, Lawrence KS, pp. 393–575

    Google Scholar 

  • Sogin ML, Elwood HJ, Gunderson JH (1986) Evolutionary diversity of eukaryotic small-subunit rRNA genes. Proc Natl Acad Sci USA 83:1382–1387

    Article  Google Scholar 

  • Sogin ML, Ingold A, Karlok M, Nielsen H, Engberg J (1987) Phylogenetic evidence for the acquisition of ribosomal RNA introns subsequent to the divergence of the majorTetrahymena groups. Eur Mol Biol Org 5:3625–3630

    Google Scholar 

  • Sonneborn TM (1947) Recent advances in the genetics of Paramecium and Euplotes. Adv Genet 1:263–358

    Article  Google Scholar 

  • Sonneborn TM (1957) Breeding systems, reproductivemethods and species problems in protozoa. In: Mayr E (ed) The species problem. A.A.A.S. Symposium, Washington DC

  • Sonneborn TM (1975) TheParamecium aurelia complex of 14 sibling species. Trans Am Microsc Soc 94:155–178

    Article  Google Scholar 

  • Steinbrueck G (1986) Molecular reorganization during nuclear differentiation in ciliates. Results Probl Cell Differ 13:105–174

    Google Scholar 

  • Vaughn JC, Sperbech SJ, Ramsey WJ, Lawrence CB (1984) A universal model for the secondary structure of 5.8S ribosomal RNA molecules, their contact sites with the 28S ribosomal RNAs and their prokaryotic equivalent. Nucleic Acids Res 12:7479–7502

    Article  PubMed  CAS  Google Scholar 

  • Williams NE (1986) Evolutionary change in cytoskeletal proteins and cell architecture in lower eukaryotes. Prog Protistol 1:309–324

    Google Scholar 

  • Woese CR (1987) Bacterial evolution. Microbiol Rev 51:221–271

    PubMed  CAS  Google Scholar 

  • Woese C, Fox GE (1977) Phylogenetic studies of the prokaryotic domain: the primary kingdoms. Proc Natl Acad Sci USA 74:5088–5090

    Article  PubMed  CAS  Google Scholar 

  • Yao M-C (1986) Amplification of ribosomal RNA genes. In: Gall JG (ed) Molecular biology of ciliated protozoa. Academic Press, New York, pp 179–201

    Google Scholar 

  • Yao M-C, Gall JG (1977) A single integrated gene for ribosomal RNA in a eukaryote,Tetrahymena pyriformis. Cell 12:121–132

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Preparata, R.M., Meyer, E.B., Preparata, F.P. et al. Ciliate evolution: The ribosomal phylogenies of the tetrahymenine ciliates. J Mol Evol 28, 427–441 (1989). https://doi.org/10.1007/BF02603078

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02603078

Key words

Navigation