Skip to main content
Log in

Evolution of RNA genomes: Does the high mutation rate necessitate high rate of evolution of viral proteins?

  • Published:
Journal of Molecular Evolution Aims and scope Submit manuscript

Summary

RNA genomes have been shown to mutate much more frequently than DNA genomes. It is generally assumed that this results in rapid evolution of RNA viral proteins. Here, an alternative hypothesis is proposed that close cooperation between positive-strand RNA viral proteins and those of the host cells required their coevolution, resulting in similar amino acid substitution rates. Constraints on compatibility with cellular proteins should determine, at any time, the covarion sets in RNA viral proteins. These ideas may be helpful in rationalizing the accumulating data on significant sequence similarities between proteins of positive-strand RNA viruses infecting evolutionarily distant hosts as well as between viral and cellular proteins.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Ahlquist P, Strauss EG, Rice CM, Strauss JH, Haseloff J, Zimmern D (1985) Sindbis virus proteins nsP1 and nsP2 contain homology to nonstructural proteins from several RNA plant viruses. J Virol 53:536–542

    PubMed  CAS  Google Scholar 

  • Andrews NC, Levin D, Baltimore D (1985) Poliovirus replicase stimulation by terminal uridylyl transferase. J Biol Chem 260: 7628–7635

    PubMed  CAS  Google Scholar 

  • Blumenthal T (1979) Qβ replicase and protein synthesis elongation factors EF-Tu and EF-Ts. Meth Enzymol 60:628–638

    PubMed  CAS  Google Scholar 

  • Domingo E, Martinez-Salas E, Sobrino F, de la Torre JC, Portela A, Ortin J, Lopez-Galindez C, Perez-Brena P, Villanueva N, Najera R, Van de Pol S, Steinhauer D, DePolo N, Holland JJ (1985) The quasispecies (extremely heterogeneous) nature of viral RNA genome populations: biological relevance—a review. Gene 40:1–8

    Article  PubMed  CAS  Google Scholar 

  • Eigen M, Gardiner W, Schuster P, Winkler-Oswatitsch R (1981) The origin of genetic information. Sci Am 244:88–118

    Article  PubMed  CAS  Google Scholar 

  • Emini E, Schleiff WA, Colonno RJ, Wimmer E (1985) Antigenic conservation and divergence between the viral-specific proteins of poliovirus type 1 and various picornaviruses. Virology 140:13–20

    Article  PubMed  CAS  Google Scholar 

  • Fitch WM (1971) Rate of change of concomitantly variable codons. J Mol Evol 1:84–96

    Article  PubMed  CAS  Google Scholar 

  • Gibbs A (1980) How ancient are the tobamoviruses? Intervirology 14:101–108

    PubMed  CAS  Google Scholar 

  • Gilbert W (1986) The RNA world. Nature 319:618

    Article  Google Scholar 

  • Goldbach R (1986) Molecular evolution of plant RNA viruses. Annu Rev Phytopathol 24:289–310

    Article  CAS  Google Scholar 

  • Goldbach R (1987) Genome similarities between plant and animal RNA viruses. Microbiol Sci 4:197–202

    PubMed  CAS  Google Scholar 

  • Gorbalenya AE, Blinov VM, Donchenko AP (1986a) Polio-virus-encoded proteinase 3C: a possible evolutionary link between cellular serine and cysteine proteinase families. FEBS Lett 194:253–257

    Article  PubMed  CAS  Google Scholar 

  • Gorbalenya AE, Donchenko AP, Blinov VM (1986b) Polio-virus proteins with different functions are probably of common origin. Molek Genetika No. 1:36–41 [in Russian]

    Google Scholar 

  • Gorbalenya AE, Koonin EV, Blinov VM, Donchenko AP (1988a) Sobemovirus genome appears to encode a serine protease related to cysteine proteases of picornaviruses. FEBS Lett 236:287–290

    Article  PubMed  CAS  Google Scholar 

  • Gorbalenya AE, Koonin EV, Blinov VM, Donchenko AP (1988b) A conserved NTP-binding motif in putative helicases. Nature 333:22

    Article  PubMed  CAS  Google Scholar 

  • Gorbalenya AE, Koonin EV, Donchenko AP, Blinov VM (1988c) A novel superfamily of nucleoside triphosphate-binding motif containing proteins probably involved in duplex unwinding in DNA and RNA replication and recombination. FEBS Lett 235:16–24

    Article  PubMed  CAS  Google Scholar 

  • Hodgman TC (1988) A protein superfamily involved in nucleic acid replication and recombination. Nature 333:22–23

    Article  PubMed  CAS  Google Scholar 

  • Holland JJ, Spindler K, Horodyski F, Grabau E, Nichol S, Van de Pol S (1982) Rapid evolution of RNA genomes. Science 215:1577–1585

    Article  PubMed  CAS  Google Scholar 

  • Kimura M (1983) The neutral theory of molecular evolution. Cambridge University Press, England

    Google Scholar 

  • Koonin EV, Agol VI (1983) Encephalomyocarditis virus replication complexes that prefer nucleoside diphosphates as substrates for viral RNA synthesis. Virology 129:309–318

    Article  PubMed  CAS  Google Scholar 

  • Krausslich HG, Nicklin MJH, Toyoda H, Etchison D, Wimmer E (1987) Poliovirus proteinase 2A induces cleavage of eukaryotic initiation factor 4F polypeptide p220. J Virol 61: 2711–2718

    PubMed  CAS  Google Scholar 

  • Liljas L (1986) Structure of spherical viruses. Prog Biophys Mol Biol 18:1–36

    Article  Google Scholar 

  • Linz JE, Lira LE, Sypherd PS (1986) The primary structure and the functional domains of an elongation factor-1 fromMucor racemosa. J Biol Chem 261:15022–15029

    PubMed  CAS  Google Scholar 

  • Ranki M, Kaariainen L (1979) Solubilized RNA replication complex from Semliki forest virus-infected cells. Virology 98: 298–307

    Article  PubMed  CAS  Google Scholar 

  • Ratner VA, Zharkikh AA, Kotchanov NA, Rodin SN, Soloviev VV, Shamin VV (1985) Problems of the theory of molecular evolution. Nauka, Novosibirsk, USSR [in Russian]

    Google Scholar 

  • Regnier P, Grunberg-Manago M, Ortier C (1987) Nucleotide sequence of the pnp gene ofEscherichia coli encoding polynucleotide phosphorylase. Homology of the primary structure of the protein with the RNA binding domain of ribosomal protein S1. J Biol Chem 262:63–68

    PubMed  CAS  Google Scholar 

  • Smith DB, Inglis SC (1987) The mutation rate and variability of eukaryotic viruses: an analytical review. J Gen Virol 68: 2729–2740

    Article  PubMed  CAS  Google Scholar 

  • Steinhauer D, Holland JJ (1987) Rapid evolution of RNA viruses. Annu Rev Microbiol 41:409–433

    Article  PubMed  CAS  Google Scholar 

  • Ward CD, Stokes MAM, Flanegan JB (1988) Direct measurement of the poliovirus RNA polymerase error frequency in vitro. J Virol 62:558–562

    PubMed  CAS  Google Scholar 

  • Watanabe Y, Okada Y (1986) In vitro viral RNA synthesis by a subcellular fraction of TMV-inoculated tobacco protoplasts. Virology 149:64–73

    Article  CAS  PubMed  Google Scholar 

  • Zimmern D (1983) Homologous proteins encoded by yeast mitochondrial introns and by a group of RNA viruses from plants. J Mol Biol 171:345–352

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Koonin, E.V., Gorbalenya, A.E. Evolution of RNA genomes: Does the high mutation rate necessitate high rate of evolution of viral proteins?. J Mol Evol 28, 524–527 (1989). https://doi.org/10.1007/BF02602932

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02602932

Key words

Navigation