Skip to main content
Log in

Subfamily structure and evolution of the human L1 family of repetive sequences

  • Published:
Journal of Molecular Evolution Aims and scope Submit manuscript

Summary

Comparative analysis of the available 3′-portions of the human L1 (LINE-1) family of repeated sequences indicates that all the sequences can be classified in two major subfamilies. The division is based on patterns of diagnostic bases shared within L1 subfamilies of sequences but differing between them. The overall ratio of replacement to synonymous positions, occupied by the diagnostic bases in the large open reading frame of the L1 sequence, is 1.15. This indicates that both subfamilies were obtained from genes coding for functional proteins. The L1 subfamilies appear to be of different ages and may represent a “fossil record” of the same active gene at different times in the history of primates. The younger subfamily can be split further into at least two closely related branches of sequences. The above facts combined with the recent data for the Alu subfamily structure show that LINE and SINE families of interspersed repeats share discontinuous patterns in their evolution. These data are consistent with the model that both Alu and L1 families, as well as other pseudogene families, contain active genes producing discrete layers of pseudogenes throughout the history of primates. Models of evolutionary processes that could generate these discontinuities are discussed together with the possible biological role of Alu and L1 genes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Britten RJ, Baron WF, Stout D, Davidson EH (1988) Sources and evolution of humanAlu repeated sequences. Proc Natl Acad Sci USA 85:4770–4774

    Article  PubMed  CAS  Google Scholar 

  • Daniels GR, Deininger PL (1985) Repeat sequence families derived from mammalian tRNA genes. Nature 317:819–822

    Article  PubMed  CAS  Google Scholar 

  • Deininger PL, Daniels GR (1986) The recent evolution of mammalian repetitive DNA elements. Trends Genet 2:76–80

    Article  CAS  Google Scholar 

  • Evans MJ, Scarpulla C (1988) The human somatic cytochrome gene: two classes of processed pseudogenes demarcate a period of rapid molecular evolution. Proc Natl Acad Sci USA 85: 9625–9629

    Article  PubMed  CAS  Google Scholar 

  • Fanning T, Singer M (1987) The LINE-1 DNA sequences in four mammalian orders predict proteins that conserve homologies to retroviral proteins. Nucleic Acids Res 15:2251–2260

    Article  PubMed  CAS  Google Scholar 

  • Faulkner DV, Jurkan J (1988) Multiple aligned sequence editor (MASE). Trends Biochem Sci 13: 321–322

    Article  PubMed  CAS  Google Scholar 

  • Hardies SC, Martin SL, Voliva CF, Hutchison CA III, Edgell MH (1986) An analysis of replacement and synonymous changes in the rodent L1 repeat family. Mol Biol Evol 3:109–125

    PubMed  CAS  Google Scholar 

  • Hardman N (1986) Structure and function of repetitive DNA in eukaryotes. Biochem J 234:1–11

    PubMed  CAS  Google Scholar 

  • Hattori M, Kuhara S, Takenaka O, Sakaki Y (1986) L1 family of repetitive DNA sequences in primates may be derived from a sequence encoding a reverse transcriptase-related protein. Nature 321:625–628

    Article  PubMed  CAS  Google Scholar 

  • Jagadeeswaran P, Forget BG, Weissman SM (1981) Short interspersed repetitive DNA elements in eucaryotes: transposable DNA elements generated by reverse transcription of RNA pol III transcripts?. Cell 26:141–142

    Article  PubMed  CAS  Google Scholar 

  • Jurka J, Smith T (1988) A fundamental division in theAlu family of repeated sequences. Proc Natl Acad Sci USA 85: 4775–4778

    Article  PubMed  CAS  Google Scholar 

  • Kazazian HH Jr, Wong C, Youssoufian H, Scott AF, Philips DG, Atonarakis SE (1988) Haemophilia A resulting fromde novo insertion of L1 sequences represents a novel mechanism for mutation in man. Nature 332:164–166

    Article  PubMed  CAS  Google Scholar 

  • Loeb DD, Padgett RW, Hardies SC, Shehee WR, Comer MB, Edgell MH, Hutchison CA III (1986) The sequence of a large L1Md element reveals a tandemly repeated 5′-end and several features found in retrotransposons. Mol Cell Biol 6: 168–182

    PubMed  CAS  Google Scholar 

  • Martin SL, Voliva CF, Burton FH, Edgell MH, Hutchison CA III (1984) A large interspersed repeat found in mouse DNA contains a long open reading frame that evolves as if it encodes a protein. Proc Natl Acad Sci USA 81:2308–2312

    Article  PubMed  CAS  Google Scholar 

  • Milosavljevic A, Haussler D, Jurka J (1989) Informed parsimonious inference of prototypical genetic sequences. Proceedings of the Second Workshop on Computational Learning Theory. Morgan Kauffmann, Menlo Park, CA

    Google Scholar 

  • Mottez EP, Rogan PK, Manuelidis L (1986) Conservation in the 5′-region of the long interspersed mouse L1 repeat: implications of comparative sequence analysis. Nucleic Acids Res 14:3119–3136

    Article  PubMed  CAS  Google Scholar 

  • Quentin Y (1988) TheAlu family developed through successive waves of fixation closely connected with primate lineage history. J Mol Evol 27:194–202

    Article  PubMed  CAS  Google Scholar 

  • Rogers J (1985) The origin and evolution of retroposons. Int Rev Cytol 93: 187–279

    PubMed  CAS  Google Scholar 

  • Sakaki Y, Kurata Y, Miyake T, Saigi K (1983) Two-dimensional gel electrophoretic analysis of theHindIII 1.8-kb repetitive-sequence family in the human genome. Gene 24:179–190

    Article  PubMed  CAS  Google Scholar 

  • Sakamoto K, Okada N (1985) Rodent type 2 Alu family, rat identifier sequence, rabbit C family, and bovine or goat 73-bp repeat may have evolved from tRNA genes. J Mol Evol 22:134–140

    Article  PubMed  CAS  Google Scholar 

  • Scott AF, Schmeckpeper BJ, Abdelrazik M, Comey CT, O’Hara B, Rossiter JP, Cooley T, Health P, Smith KD, Margolet L (1987) Origin of the human L1 elements: proposed progenitor genes deduced from a consensus DNA sequence. Genomics 1:113–125

    Article  PubMed  CAS  Google Scholar 

  • Servomaa K, Rytomaa T (1988) Suicidal death of rat chloroleukemia cells by activation of the long interspersed repetitive DNA element (L1Rn). Cell Tissue Kinet 21:33–43

    PubMed  CAS  Google Scholar 

  • Singer MF (1982) Highly repeated sequences in mammalian genomes. Int Rev Cytol 76:67–112

    Article  PubMed  CAS  Google Scholar 

  • Singer MF, Skowronski J (1985) Making sense out of LINES. Trends Biochem Sci 10:119–122

    Article  CAS  Google Scholar 

  • Skowronski J, Singer MF (1986) The abundant LINE-1 family of repeated DNA sequences in mammals: genes and pseudogenes. Cold Spring Harbor Symp Quant Biol 51:457–463

    PubMed  CAS  Google Scholar 

  • Skowronski J, Fanning TG, Singer MF (1988) Unit-length line-1 transcripts in human teratocarcinoma cells. Mol Cell Biol 8: 1385–1397

    PubMed  CAS  Google Scholar 

  • Slagel V, Flemington E, Traina-Dorge V, Bradshaw H, Deininger P (1987) Clustering and subfamily relationships of theAlu family in the human genome. Mol Biol Evol 4:19–29

    PubMed  CAS  Google Scholar 

  • Smith TF, Waterman MS (1981) Identification of common molecular subsequences. J Mol Biol 145:195–197

    Article  Google Scholar 

  • Sobel E, Martinez HN (1985) A multiple sequence alignment program. Nucleic Acids Res 14:363–374

    Article  Google Scholar 

  • Ullu E, Tschudi C (1984) Alu sequences are processed 7SL RNA genes. Nature 312:171–172

    Article  PubMed  CAS  Google Scholar 

  • Ullu E, Weiner AM (1985) Upstream sequences modulate the internal promoter of the human 7SL RNA gene. Nature 318: 371–374

    Article  PubMed  CAS  Google Scholar 

  • Van Arsdell SW, Denison RA, Bernstein LB, Weiner AM, Manser T, Gesteland RF (1981) Direct repeats flank three small nuclear RNA pseudogenes in the human genome. Cell 26: 11–17

    Article  PubMed  Google Scholar 

  • Wagner M (1986) A consideration of the origin of processed pseudogenes. Trends Genet 2:134–137

    Article  Google Scholar 

  • Weiner AM, Deininger PL, Efstradiatis A (1986) Nonviral retroposons: genes, pseudogenes, and transposable elements generated by the reverse flow of genetic information. Annu Rev Biochem 55: 631–661

    Article  PubMed  CAS  Google Scholar 

  • Wilbur WJ, Lipman DJ (1983) Rapid similarity searches of nucleic acid and protein data bases. Proc Natl Acad Sci USA 80:726–730

    Article  PubMed  CAS  Google Scholar 

  • Wilde CD (1986) Pseudogenes. CRC Crit Rev Biochem 19: 323–352

    PubMed  CAS  Google Scholar 

  • Willard C, Nguyen HT, Schmid CW (1987) Existence of at least three distinctAlu subfamilies. J Mol Evol 26:180–186

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Jurka, J. Subfamily structure and evolution of the human L1 family of repetive sequences. J Mol Evol 29, 496–503 (1989). https://doi.org/10.1007/BF02602921

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02602921

Key words

Navigation