Skip to main content
Log in

A survey and future predictions for the use of chip breaking in unmanned systems

  • Published:
The International Journal of Advanced Manufacturing Technology Aims and scope Submit manuscript

Abstract

This paper is aimed at presenting the current status of the knowledge and the use of chip control in machining, with a view to identifying the further work required for total chip control in unmanned systems. The results of an extensive survey on chip control covering over 160 published works since 1900 have been classified and summarised in 11 chip control-associated keyword groups. A critical review of the present status of research and future directions are then presented. This highlights the need for developing knowledge-based systems on the basis of a coding and classification system and the machinability data banks featuring predictive machining theories. An extension to this off-line processing facility in the proposed knowledge-based system would be the use of an on-line sensor-based chip form monitoring technique.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Bibliography

  1. F. W. Taylor, ‘On the Art of Cutting Metals’,Trans. ASME 28, pp. 31–350 (1907).

    Google Scholar 

  2. A. L. Deleeuw,Metal Cutting Tools, McGraw-Hill Book Company, New York, 1922.

    Google Scholar 

  3. H. Klopstock, ‘Recent Investigations in Turning and Planning and a New Form of Cutting Tool, Trans. ASME47, pp. 345–377 (1925).

    Google Scholar 

  4. E. G. Herbert, ‘Cutting Tools Research Committee Report on Machinability,’Proc. Inst. Mech. Eng. Part V, pp. 19–21 (1928).

    Google Scholar 

  5. H. Hemscheidt, ‘Chip Types and Chip Breakers for Cutting Steel with Carbides’,TZ Fur Praktische Metallbearbeitung 51 (13/14), (15/16), (17/18), (19/20) (1941).

  6. E. Almdale, ‘Chip Control when Machining Steel with Carbide,’Tool & Die Journal IX, pp. 105–109 (1943).

    Google Scholar 

  7. J. B. Armitage and A. O. Schmidt, ‘An Investigation of Radial Rake Angles in Face Milling’,Trans. ASME 66, pp. 633–643 (1944).

    Google Scholar 

  8. G. I. Kiselev, ‘Results of a Study of the Performance of a Dynamical Chip Breaker’,Stankii Instrumient 22 (4), (April 1951).

  9. E. K. Henriksen,Chip Breakers, National Machine Tool Builders Association, Cleveland, Ohio, USA, 1953.

    Google Scholar 

  10. L. V. Colwell, ‘Predicting the Angle of Chip Flow for Single-Point Cutting Tools’,Trans. ASME 76 (2), pp. 199–204 (1954).

    Google Scholar 

  11. E. K. Henriksen, ‘Balanced Design Will Fit the Chip Breaker to the Job: Chip Breaker Dimensions are Critical in Taming Chips’,American Machinist 98 (4), pp. 118–124 (1954).

    Google Scholar 

  12. B. L. Ten Horn and R. A. Schuermann, ‘Chip Control, How to Determine Tool Feed to Obtain Desirable Chip Form?’,Tool Engineer 32 (4), pp. 37–44 (1954).

    Google Scholar 

  13. E. K. Henriksen, ‘Findings and Directions in Chip Breakers Research’,Proc. 23rd Annual Meeting of ASTE, Los Angeles, California (14–18 March 1955).

  14. B. Anon, ‘Soviets Claim New Cutting Tool Geometry Eliminates Vibration and Multiplies Tool Life 80–200 Times’,American Machinst, pp. 190–194 (12 March 1956).

  15. L. Fine, ‘Chip Control. Part 1. Grooves in Carbide-tipped Turning Tool’,Aircraft Production, pp. 156–161 (April 1956).

  16. L. Fine, ‘Chip Control. Part 2. Unconventional Chip Control Grooves’,Aircraft Production, pp. 200–205 (May 1956).

  17. H. Takeyama and E. Usui, ‘The Effect of Tool-Chip Contact Area in Metal Machining’,Trans. ASME 80, pp. 1089–1096 (1958).

    Google Scholar 

  18. B. T. Chao and K. J. Trigger, ‘Controlled Contact Cutting Tools’,Trans. ASME 81 (2), pp. 139–151 (1959).

    Google Scholar 

  19. N. G. Abduladze, ‘Length of Plastic Contact on Rakeface During Metal Cutting,’Trudi-Gruz, Politech. Inst. Tbilisi,29, p. 25 (1959).

    Google Scholar 

  20. M. I. Klushin, ‘Determination of the Contact Zone between Chip and Rake Face and the Pressure in this Zones,’Stankii Instrumient 31, pp. 22–23 (1960).

    Google Scholar 

  21. W. B. Heginbotham and S. L. Gogia, ‘Metal Cutting and the Built-Up Nose,’Proc. Inst. Mech. Eng. 175 (18), pp. 892–917 (1961).

    Google Scholar 

  22. K. J. Trigger and A. Bhattacharyya, ‘Performance of Controlled Contact Tools’,Journal of Inst. Engrs. (India) 63 (Nov. 1962).

  23. W. Johnson, ‘Some Slip-line Fields for Swaging or Expanding, Indenting, Extruding and Machining for Tools with Curved Dies,’Int. J. Mech. Sci. 4, pp. 323–347 (1962).

    Google Scholar 

  24. V. M. Lutov, ‘Selecting the Optimum Size of Chip-breaking Grooves,’Machines and Tooling 33 (7), pp. 27–30 (1962).

    Google Scholar 

  25. P. L. B. Oxley, ‘An Analysis for Orthogonal Cutting with Restricted Tool-Chip Contact’,Int. J. Mech. Sci. 4, pp. 129–135 (1962).

    Article  Google Scholar 

  26. V. I. Sisoev,Fundamentals of Metal Cutting and Cutting Tools, Mashigiz, Moscow, 1962.

    Google Scholar 

  27. K. Nakayama, ‘Chip Curl in Metal Cutting Process’,Bulletin of the Faculty of Engineering, Yokohama National Univ. 11, pp. 1–13 (1962).

    MathSciNet  Google Scholar 

  28. K. Nakayama, ‘A Study on Chip Breaker’,Bulletin of JSME 5 (17), pp. 142–150 (1962).

    Google Scholar 

  29. E. Usui and M. C. Shaw, ‘Free Machining Steel-IV: Tools with Reduced Contact Length’,Trans ASME, pp. 89–101 (1962).

  30. K. Hoshi and E. Usui ‘Wear Characteristics of Carbide Tools with Artificially Controlled Tool-Chip Contact Length’,Proc. 3rd Int. MTDR Conf. pp. 121–128 (September 1962).

  31. K. Nakayama, ‘Pure Bending Test of Chip—An Approach to the Prediction of Cutting Force’,Bulletin of the Faculty of Engineering, Yokohama National Univ.,12, pp. 1–14 (1963).

    MathSciNet  Google Scholar 

  32. N. H. Cook, P. Jhaveri and N., Nayak, ‘The Mechanism of Chip Curl and its Importance in Metal Cutting’,Trans. ASME, pp. 374–380 (1963).

  33. V. N. Poduraev and A. M. Bezborodov, ‘Using Self-exited Vibrations for Chip Breaking,’Machines and Tooling 34 (1), pp. 19–22 (1963).

    Google Scholar 

  34. E. Usui and K. Hoshi, ‘Slip-line Fields in Metal Machining Which Involve Centered Fans’,Proc. Int. Prod. Eng. Res. Conf. ASME, Pittsburgh, pp. 61–71 (September 1963).

  35. M. C. Shaw, ‘Resumé and Critique of Papers in Part One’,Proc. Int. Prod. Eng. Res. Conf. ASME, Pittsburgh, pp. 3–17 (September 1963).

  36. G. V. Stabler, ‘The Chip Flow Law and its Consequences’,Proc. 5th Int. MTDR Conf., pp. 243–251 (September 1964).

  37. A. J. Pekelharing, ‘Why and How Does the Chip Curl and Break?,’Annals of the CIRP 12, pp. 144–147 (1964).

    Google Scholar 

  38. E. Usui, K. Kikuchi and K. Hoshi, ‘The Theory of Plasticity Applied to Machining with Cut-Away Tools’,Trans. ASME, pp., 95–104 (May 1964).

  39. H. Kudo, ‘Some New Slip-line Solutions for Two-dimensional Steady-State Machining,”Int. J. Mech. Sci. 7, pp. 43–55 (1965).

    Article  Google Scholar 

  40. W. Johnson and F. U. Mahtab, ‘Upper Bounds or Restricted Edge Machining: Paper I’,Proc. 6th Int. MTDR Conf., pp. 447–462 (1965).

  41. W. Johnson and F. U. Mahtab, ‘Some Solutions using Slip-line Fields and the Methods of Upper Bounds for Milling, Turning and Boring: Paper II’,Proc. 6th Int. MTDR Conf., pp. 463–485 (1965).

  42. W. Johnson, ‘Further Rotational Configurations—Straight Straight Starting Slip-lines: Paper III’Proc. 6th Int. MTDR Conf., pp. 487–490 (1965).

  43. I. I. Shilin and K. G. Sadolevskaya, ‘Chip Breaking by Interrupted Feed’,Machines and Tooling 36, pp. 30–32 (1965).

    Google Scholar 

  44. A. F. Vlasov, ‘Pneumatic Methods of Removing Chips and Dust’, (MTIRA Translation-T204),Mashino stroitel, pp. 33–38 (1965).

  45. J. K. Russell and R. H. Brown, ‘Deformation During Chip Formation’,Trans. ASME, pp. 53–56 (1965).

  46. G. F. Dzanashvili, ‘Chip Breaking by Interrupted Cutting,’Vestnik Mashinostroeniya, (7), pp. 72–73 (1965).

    Google Scholar 

  47. S. Y. Lo, U. Lode and E. J. A. Armarego, ‘Experiments with Controlled Contact Tools’,Int. J. MTDR,6, pp. 115–127 (1966).

    Google Scholar 

  48. M. Okoshi and K. Kawata, ‘Effects of the Curvature on Work Surface on Metal Cutting’,Annals of the CIRP 15, pp. 393–403 (1967).

    Google Scholar 

  49. W. Johnson, ‘Cutting with Tools Having a Rounded Edge—Some Theoretical Consideration’,Annals of the CIRP 14, pp. 315–319 (1967).

    Google Scholar 

  50. P. F. Ostwald, ‘Dynamic Chip Breaking: Can it Overcome the Surface Finish Problem?’, ASTME Paper MR67-228 (1967).

  51. G. R. Ponkshe, ‘A New Explanation of the Phenomenon of Chip Curling During Machining’,Trans. ASME, pp. 376–379 (1967).

  52. C. Rubenstein, ‘The Mechanism of Orthogonal Cutting with Controlled Contact Tools’,Int. J. MTDR 8, pp. 203–216 (1968).

    Google Scholar 

  53. J. A. Bailey and G. Boothroyd, ‘Critical Review of Some Previous Work on the Mechanics of the Metal Cutting Process’,Trans. ASME, pp. 54–62 (1968).

  54. P. F. Ostwald and J. E. Shamblin, ‘Effects of Dynamic Chip Breaking upon Surface Micro Geometry and Free-Chip Dimension,’Trans. ASME 90, pp. 71–78 (1968).

    Google Scholar 

  55. C. Stickforth, ‘Moderne Methoden der Handhabung von Produktions—abfallen’,Technischez Zentralblatt fur praktische Metallbearbeitung 62 (12), pp. 633–635 (1968).

    Google Scholar 

  56. I. Ham and A. Bhattacharyya, ‘Design of Single Point Cutting Tools-Use of Metal Cutting Theory’,Ch. 4, Design of High Production Cutting Tools, ASTME, Michigan, pp. 99–115 (1969).

    Google Scholar 

  57. C. C. Dawe and C. Rubenstein, ‘Analysis of Chip Curvature’,Proc. 10th Int. MTDR Conf., pp. 283–298 (1969).

  58. G. E. Kane, E. J. McTamany and J. F. Peritore, ‘A Systematic Approach to the Breaking of Chips’,ASTME Paper, MR69-174 (1969).

  59. M. M. Barash and W. J. Schoech, ‘A Semi-Analytical Model of the Residual Stress Zone in Orthogonal Machining’,Proc. 11th Int. MTDR Conf., pp. 603–613 (1970).

  60. W. Johnson, R. Sowerby and J. B. Haddow,Plane-Strain Slip-line Fields: Theory and Bibliography, Edward Arnold (Publishers) Ltd., London, 1970.

    Google Scholar 

  61. N. Shinozaki and H. Hirota, ‘Chip Breaking by Rolling Tool’, SME Paper MR70-250 (1970).

  62. H. Takeyama, H. Sekiguchi and K. Takada, ‘One Solution for Chip Hazard in Turning-Study on Automatic Programming for Numerically Controlled Machines (1st Report)’,Journ. Jap. Soc. for Prec. Engg. 36(2), pp. 150–156, (1970).

    Google Scholar 

  63. C. Spaans, ‘A Systematic Approach to Three Dimensional Chip Curl, Chip Breaking and Chip Control’, SME Paper 70-241 (1970).

  64. M. Y. Friedman and E. Lenz, ‘Investigation of the Tool-Chip Contact Length in Metal Cutting’,Int. J. MTDR 10, pp. 401–416 (1970).

    Google Scholar 

  65. G. L. Khaet and G. F. Vasilyuk, ‘Effect of a Rounded Cutting Edge on Cemented Carbide Tools’,Russian Eng. Journal L (4), pp. 81–84 (1970).

    Google Scholar 

  66. C. Spaans and P. F. H. J. Van Geel, ‘Break Mechanisms in Cutting with a Chip Breaker’,Annals of the CIRP 18, pp. 87–92 (1970).

    Google Scholar 

  67. R. Komanduri, ‘Some Aspects of Machining with Negative Rake Tools Simulating Grinding’,Int. J. MTDR 11, pp. 223–232 (1971).

    Google Scholar 

  68. G. E. Kane, ‘The Effect of Tool Geometry on Chip Breaking’,Proc. 1st Int. Conf. on Cemented Carbide, SME, pp. 227–238 (February 1971).

  69. C. Spaans, ‘A Comparison of an Ultrasonic Method to Determine the Chip/Tool Contact Length with Some Other Methods’,Annals of the CIRP 19, pp. 485–490 (1971).

    Google Scholar 

  70. C. Spaans, ‘The Fundamentals of Three-Dimensional Chip Curl, Chip Breaking and Chip Control’, Doctoral Thesis, TH Delft (1971).

  71. W. K. Luk, ‘The Direction of Chip Flow in Oblique Cutting’,Int. J. Prod. Res. 10 (1), pp. 67–76 (1972).

    MathSciNet  Google Scholar 

  72. K. Nakayama, ‘Origins of Side Curl of Chip in Metal Cutting’,Bull. Japan Soc. of Prec. Engg. 6 (3), pp. 99–101 (1972).

    MathSciNet  Google Scholar 

  73. M. O. Noodel'man, ‘Effect of Wear on Chip-Breaker-Grooved Tools’,Russian Eng. Journal,L11 (8), pp. 66–67 (1972).

    Google Scholar 

  74. R. L. Kaul and C. K. Singh, ‘Some Investigations on Chip Curl and Chip Breaker’,Proc. 5th AIMTDR Conf., Univ. Roorkee, India, pp. 85–89 (April 1972).

  75. B. K. Nagpal and C. S. Sharma, ‘Investigation of Tool-Chip Contact Length in Flooding and Hi-Jet methods of Cutting Fluid Application’,Proc. 5th AIMTDR Conf., Univ. Roorkee, India, pp. 17–23 (April 1972).

  76. D. G. Jones and J. F. McCreery, ‘A Study of Preformed Chip Control Devices in Throwaway Carbide Inserts’, SME Technical Paper MR73-215, 1973.

  77. G. Boothroyd and L. E. Reinhart, ‘Effect of Chip Forming Devices on Tool-wear in Metal Cutting’,Proc. 1st North Amer. Met. Working Res. Conf., Hamilton, Ontario2, pp. 13–33 (May 1973).

    Google Scholar 

  78. B. Sperandio, ‘Chip Control—Design Innovations Which Increase the Chip Control Range and Capacity of Indexable Inserts’, SME Technical Paper MR73-904 (1973).

  79. B. Worthington and A. H. Redford, ‘Chip Curl and the Action of the Groove Type Chip Former’,Int. J. MTDR 13, pp. 257–270 (1973).

    Google Scholar 

  80. K. Minato, T. Teshima and Y. Kakino, ‘A Study on the Chip-Excluding (1st Report)—An Estimated Method of the Facility of Chip-Excluding with Air’,Bull. Japan Soc. of Prec. Engg. 8 (1), pp. 21–22 (1974).

    Google Scholar 

  81. N. I. Tashlitskii and V. S. Kushner, ‘Cemented—Carbide Tools for Finish—Turning Steels’,Russian Eng. Journal 54 (5), pp. 59–62 (1974).

    Google Scholar 

  82. B. Worthington, ‘Surface Integrity, Cutting Forces and Chip Formation When Machining with Double Rake Angle Tools’,Int. J. MTDR 14, pp. 279–295 (1974).

    Google Scholar 

  83. D. F. Pearce and D. B. Richardson, ‘Machining Stability using Controlled Contact Tools’,Int. J. Prod. Res. 13 (1), pp. 75–82 (1975).

    Google Scholar 

  84. J. S. Bator, ‘Power Reduction Through Efficient Chip Control’Cutting Tool Engineering, pp. 4–8 (July/August 1975).

  85. G. Boothroyd, ‘Chip Control: (Ch. 8 of Book)—Fundamentals of Metal Machining and Machine Tools, McGraw Hill Book Company, 1975.

  86. B. Worthington, ‘The Effect of Rake Face Configuration on the Curvature of the Chip in Metal Cutting’,Int. J. MTDR 15, pp. 223–239 (1975).

    Google Scholar 

  87. J. W. Heaton, ‘The Development of a Heavy Duty Tooling System’, SME Technical Paper TE 75-404, 1975.

  88. C. A. Van Luttervelt, ‘Chip Formation in Machining Operation at Small Diameter’,Annals of the CIRP 25 (1), pp. 71–76 (1976).

    Google Scholar 

  89. S. Kaldor,Investigation of Chip Breaking, MSc Thesis, Technion—Israel Institute of Technology, Haifa, Israel (1976).

    Google Scholar 

  90. I. G. Mansyrev, ‘Kinematic Chip Breaking’,Stanki i Instrumient 47 (2), pp 32–34 (1976).

    Google Scholar 

  91. B. Worthington, ‘The Operation and Performance of a Groove-type Chip forming Device’,Int. J. Prod. Res. 14 (5), pp. 529–558 (1976).

    Google Scholar 

  92. D. F. Pearce, ‘Dynamic Chip formation when Machining with Restricted Contact Tools’,Proc. 18th Int. MTDR Conf., pp. 339–405 (1977).

  93. D. F. Pearce and D. B. Richardson, ‘Improved Machining Capability using Controlled Contact Tools’,CME, pp. 55–57 (Jan. 1977).

  94. P. K. Wright, ‘Applications of theExperimental Methods used to Determine Temperature Gradients in Cutting Tools’,Proc. Australian Conf. on Manuf. Engineering, pp. 145–149 (Aug. 1977).

  95. R. L. Woodward, ‘Determination of Plastic Contact Length Between Chip and Tool in Machining’, Technical Briefs,Trans. ASME 99, pp. 802–804 (1977).

    Google Scholar 

  96. D. B. Richardson and D. F. Pearce, ‘Measurement of Dynamic Cutting Force when using Restricted Contact Tools’,Proc. 18th Int. MTDR Conf., pp. 391–397 (1977).

  97. F. O. Rasch and K. Tonnessen, ‘Tool Failure and Chip Form as Restriction when Selecting Cutting Data’,Annals of the CIRP 25 (1), pp. 45–48 (1977).

    Google Scholar 

  98. J. G. Horne, E. D. Doyle and D. Tabor, ‘Direct Observation of the Chip/Tool Interface’,Proc. 5th North Amer. Metal Working Res. Conf., pp. 237–241 (1977).

  99. N. K. Lavrov, ‘Analysis of Swarf Breaking Devices’,Russian Eng. Journal 57 (10), pp. 42–44 (1977).

    Google Scholar 

  100. K. Nakayama and M. Arai, ‘Roles of Brittleness of Work Material in Metal Cutting’, Proc. Int. Symposium on Influence of Metallurgy on Machinability of Steel, Tokyo, Japan, pp. 421–432 (Sept. 1977).

  101. N. Gane, ‘Chip Fracture During Metal Machining’,Proc. Australian Conf. on Manufacturing Engineering, pp. 127–131 (1977).

  102. P. Dewhurst, ‘The Mechanics of Machining—An Investigation of the Primary Mode of Deformation,’Departmental Report, Mech. and Aeronautical Eng. Dept., University of Salford, Salford UK (1978).

    Google Scholar 

  103. C. J. Kotval and M. M. Barash, ‘Reducing the Temperture at Tool-Chip-Work Contact by Changing the Effective Thermal Conductivity of the Tool,’Trans. ASME 10, pp. 387–389 (1978).

    Google Scholar 

  104. P. Dewhurst, ‘On the Non-Uniqueness of the Machining Process’,Proc. Roy. Soc., London,A 360, pp. 587–610 (1978).

    Google Scholar 

  105. J. G. Horne, ‘A New Model for Initial Chip Curl in Continuous Cutting’,Int. J. Mech. Sci. 20, pp. 739–745 (1978).

    Article  Google Scholar 

  106. K. Nakayama and M. Ogawa, ‘Basic Rules on the Form on Chip in Metal Cutting’,Annals of the CIRP 27 (1), pp. 17–21 (1978).

    Google Scholar 

  107. N. I. Tashlitskii et al, ‘Finish Turning of Interactable Alloys using Tools with a Finishing Edge’,Russian Eng. Journal 58 (8), pp. 43–44 (1978).

    Google Scholar 

  108. J. M. Challen and P. L. B. Oxley, ‘An Explanation of the Different Regimes of Friction and Wear using Asperity Deformation Models’,Wear 53, pp. 229–243 (1979).

    Article  Google Scholar 

  109. P. Dewhurst, ‘The Effect of Chip Breaker Constraints on the Mechanics of the Machining Process’,Annals of the CIRP 28 (1), pp. 1–5 (1979).

    Google Scholar 

  110. A. Ber, S. Kaldor and E. Lenz, ‘New Concept in Chip-Breaker Design Leads to a Wider Range of Chip-Breaking’, SMT Technical Paper MR79-307 (1979).

  111. S. Kaldor, A. Ber and E. Lenz, ‘On the Mechanism of Chip Breaking’,Trans. ASME 101, pp. 241–249 (1979).

    Google Scholar 

  112. W. Kluft, W. König, C. A. Van Luttervelt, K. Nakayama and A. J. Pekelharing, ‘Present Knowledge of Chip Control’,Keynote Paper, Annals of the CIRP 28 (2), pp. 441–455 (1979).

    Google Scholar 

  113. E. Lundgren, “Optimising Performance of Cutting Edge’,Proc. Conf. New Frontiers in Tool Materials, Cutting Techniques and Metal Forming 2 (Session II, Paper 1) (1979).

  114. N. Gane, ‘Chip Fracture During the Machining of Brass’,Proc. 4th Tewksbury Symposium, Melbourne (Feb. 1979).

  115. B. Worthington and M. H. Rahman, ‘Predicting Breaking with Groove Type Breakers’,Int. J. MTDR 19, pp. 121–132 (1979).

    Google Scholar 

  116. Y. Z. Zhang, ‘Chip Curl, Chip Breaking and Chip Control of the Difficult-to-Cut Materials’,Annals of the CIRP 29 (1), pp. 79–83 (1980).

    Google Scholar 

  117. P. K. Wright, S. P. McCormick and T. R. Miller, ‘Effect of Rake Face Design on Cutting Tool Temperature Distribution’,Trans. AMSE 102, pp. 123–128 (1980).

    Google Scholar 

  118. R. J. Grieve and A. C. Thaker, ‘Some Aspects of Chip Control in Profile Boring’,Int. J. Prod. Res. 18, pp. 539–558 (1980).

    Google Scholar 

  119. K. Nakayama and M. Arai, ‘The Breakability of Chip in Metal Cutting’,Proc. Int. Conf. on Manuf. Eng., Melbourne, Australia, pp. 6–10 (1980).

  120. R. N. Mittal, B. L. Juneja and G. S. Sekhon, ‘A Solution of the Oblique Controlled Contact Continuous Cutting Problems’,Int. J. MTDR 20, pp. 211–221 (1980).

    Google Scholar 

  121. A. H. Redford, ‘The Effect on Cutting Tool-wear of Various Types of Chip Control Device’,Annals of the CIRP 29 (1), pp. 67–71 (1980).

    Google Scholar 

  122. A. Ber, S. Kaldor and E. Lenz, ‘A Chip Breaker Design’, Report, Technion—Faculty of Mech. Engg., Haifa, Israel, 1980.

    Google Scholar 

  123. S. Ramalingam and P. V. Desai, ‘Tool-Chip Length in Orthogonal Machining’,ASME Paper 80, WA/Prod. 23, 1980.

  124. K. Nakayama, M. Arai and T. Kondo, ‘Cutting Tools with Curved Rake Face—A Means for Breaking Thin Chips’,Annals of the CIRP 30 (1), pp. 5–8 (1981).

    Google Scholar 

  125. R. G. Davydova, ‘Chip Breaking Device for Turning’,Soviet Eng. Research 2 (7), pp. 72–74 (1982).

    Google Scholar 

  126. R. N. Mittal and B. L. Juneja, ‘Effect of Stress Distribution on the Shear Angle in Controlled Contact Orthogonal Cutting’,Int. J. MTDR 22 (2), pp. 87–96 (1982).

    Google Scholar 

  127. L. De Chiffre, ‘Cutting Tools with Restricted Contact’,Int. J. MTDR 22 (4), pp. 321–332 (1982).

    Google Scholar 

  128. Fagersta Steels (Pty) Ltd., South Africa, ‘Turning with Modern Indexable Insert Tooling’,South African Machine Tool Review 15 (5), pp. 9–15 (May 1982).

    Google Scholar 

  129. K. Uegami and K. Tamamura, ‘Method of Determining the Actual Form of the Tool Edge from Chips’,Memoris of Fac. Eng., Osaka City University, pp. 1–24 (1982).

  130. P. L. B. Oxley, ‘Machinability: A Mechanics of Machining Approach’ (Invited paper to ASME in honour of F. W. Taylor). Published byASME in ‘On the Art of Cutting Metals— 75 Years Later: A Tribute to F. W. Taylor’,PED 7, pp. 37–83 (1982).

    Google Scholar 

  131. S. Nakamura, G. J. Wuebbling and J. D. Christopher, ‘Chip Control in Turning’,Proc. Int. Tool and Manuf. Eng. Conf., SME, USA, pp. 159–177 (May 1982).

  132. K. Gettleman (Editor Interviewer) and K. H. McKee (Interviewee—Manager, Engineering, Carboloy Systems Dept. Michigan, USA), ‘New Groove Geometries Boost Insert Performance’, Interview Summary byModern Machine Shop, pp. 58–63 (Feb. 1983).

  133. I. Yellowley, ‘The Utilisation of Restricted Rake Face Contact Turning Tools’,Annals of the CIRP 32 (1), pp. 75–78 (1983).

    Google Scholar 

  134. J. M. Challen, ‘Slip-line Fields (for Polishing) with a Cylindrically Shaped Abrasive Grit’, Research Report No. 1983/AM/1, School of Mech. & Ind. Engineering, University of NSW, Sydney (March 1983).

    Google Scholar 

  135. H. Beran, ‘Development of Moulded Chip Breakers in Indexable Inserts’,Aust. Machinery & Prod. Engg., pp. 17–18 (April 1983).

  136. C. A. Brown, ‘A Practical Method for Estimating Machining Forces from Tool-Chip Contact Areas’,Annals of the CIRP 32 (1), pp. 91–95 (1983).

    Google Scholar 

  137. C. A. Brown (University of Vermont and State Agricultural College), ‘Material Behaviour During Chip Formation’, Diss. Abstr. Int.,44 (4), p. 186 (October 1983).

    Google Scholar 

  138. M. M. Elkhabeery, ‘A Study of Some Aspects of Metal Machining Using Controlled Contact Length Tools’, Diss. Abstr. Int.,44 (5), p. 206 (November 1983).

    Google Scholar 

  139. K. Nakayama, ‘Chip Control in Metal Cutting’,Bull. Japan. Soc. of Prec. Eng. 18 (2), pp. 97–103 (1984).

    Google Scholar 

  140. A. K. A. Radwan and R. M. Taher, ‘Some Observations on Machining Steel using Tools with Step-Type Chip Breakers’,Proc. North Amer. Met. Work. Res. Conf., pp. 367–371 (1984).

  141. P. K. Venuvinod, W. L. Lau and C. Rubenstein, ‘Analysis of the Life of Controlled Contact Tools via Flank Contact Temperature Estimation’,Annals of the CIRP 33 (1), pp. 55–59 (1984).

    Google Scholar 

  142. C. Y. Jiang, Y. Z. Zhang and Z. J. Chi, ‘Experimental Research of the Chip Flow Direction and its Application to the Chip Control’,Annals of the CIRP 33 (1), pp. 81–84 (1984).

    Google Scholar 

  143. Kennametal Inc., ‘Chip Control Research Through High-Speed Motion Analysis’,Carbide Tool Journal 16 (3), pp. 21–23 (May–June 1984).

    Google Scholar 

  144. H. K. Toenshoff, H. Winkler and M. Patzke, ‘Chip Formation at High-Cutting Speeds’, Proc. Conf. on High Speed Machining, New Orleans, Louisiana, USA (9–14 Dec. 1984),ASME Paper PED 12, pp. 95–100 (1984).

    Google Scholar 

  145. Andrew de Vica, ‘Simple Vision System Monitors Tools and Swarf’,Prod. Engineer 63 (2), pp. 24–25 (Feb. 1984).

    Google Scholar 

  146. O. Bjorke, ‘Towards Integrated Manufacturing Systems—Manufacturing Cells and Their Subsystems’,Robotics and Comp. Integ. Manuf. 1 (1), pp. 3–19 (1984).

    Article  Google Scholar 

  147. M. M. Elkhabeery and J. A. Bailey, ‘Surface Integrity in Machining Solution—Treated and Aged 2024 Aluminium Alloy Using Natural and Controlled Contact Length Tools. I— Unlubricated Conditions’,J. Eng. Mater. Technol; Trans. ASME 106 (2), pp. 152–160 (April 1984).

    Google Scholar 

  148. J. A. Bailey and M. M. Elkhabeery, ‘Surface Integrity in Machining Solution—Treated and Aged 2024 Aluminium Alloy Using Natural and Controlled Contact Length Tools. II —Lubricated Conditions’,J. Eng. Mater. Technol; Trans. ASME 106 (2), pp. 161–166 (April 1984).

    Article  Google Scholar 

  149. R. Komanduri and M. Lee, ‘The Ledge Tool: A New Cutting Tool Insert’,J. Ind. Trans. ASME 107, pp. 99–106 (1985).

    Google Scholar 

  150. S. Yamamoto, T. Araki and H. Nakajima, ‘Chip Disposability and Tool Wear in Ferritic Steels Mixed with Martensite’,Tetsu-to-hagane (J. Iron Steel Inst. Japan)71 (6), pp. 756–763 (Apr. 1985) (in Japanese).

    Google Scholar 

  151. S. Yamauchi, A. Komura and M. Yamamoto, ‘A Study on Surface Finishing Using a High Feed-Rate Turning-Disposal of Chips and Finishing Surface’,Hitachi Zosen Tech. Rev. 46 (3), pp. 48–60 (Sept. 1985) (in Japanese).

    Google Scholar 

  152. S. Shiratori, ‘Trends in the Geometry of Machining Tools’,Metal Technol. (Japan) 55 (5), pp. 19–27 (May 1985) (in Japanese).

    Google Scholar 

  153. P. K. Venuvinod, “On the Formation of a Unique type of Continuous Chips Resembling Transient Chips’,Proc. First Int. Metal Cutting Conf., Guanzhou, P.R. China (Mar. 1983); China Academic Publishers, pp. 177–195 (1985).

  154. K. Nagasaka and F. Hashimoto, ‘Selection of the Cutting Conditions Considering Quality of Chip Disposal’,Bull. Univ. Osaka Prefect 34 (1), pp. 107–117 (1985).

    Google Scholar 

  155. F. Vintner and P. Stanek, ‘A Contribution to Chip Forming Problems in Automated Production’,Strojirenstvi 35 (4), pp. 236–240 (1985) (in Czech).

    Google Scholar 

  156. J. Triesch, ‘Chip Removal and Coolant Filtration on Machine Tools’,Werkstatt Betr 118 (4), pp. 229–230 (Apr. 1985) (in Czech).

    Google Scholar 

  157. D. A. Dornfeld and C. S. Pan, ‘A Study of Continuous/Discontinuous Chip Formation Using Acoustic Emission’,J. Appl. Metalwork 4 (1), pp. 18–29 (July 1985).

    Google Scholar 

  158. ‘Control of the Chip in Turning’,Utensil 7 (3), pp. 31–33 (Mar. 1985) (in Italian).

  159. T. Yato, H. Takeyama and R. Murata, ‘Chip Control by Means of Specially Designed Helicoidal Faced Cutting Tool’,J. Mech. Eng. Lab. (Japan) 40 (2), pp. 22–36 (1986) (in Japanese).

    Google Scholar 

  160. C. Rubenstein, P. K. Venuvinod and W. S. Lau, ‘Analysis of Oblique Cutting with Controlled Contact Tools’,Annals of the CIRP 35 (1), pp. 51–54 (1986).

    Article  Google Scholar 

  161. ‘Chip Disposal on Machining Centers’,Metalwork Eng. Mark 8 (3), pp. 42–48 (May 1986).

  162. K. Y. Yee, D. S. Blomquist, D. A. Dornfeld and C. S. Pan, ‘Acoustic Emission Chip-Form Monitor for Single-Point Turning’,Proc. 26th Int. MTDR Conf., Manchester, England, pp. 305–311 (Sept. 1986).

  163. V. Rocek, ‘Shapes of Chip Formers and their Application Possibilities’,Strojir Vyroba 34 (5), pp. 377–380 (May 1986) (in Czech).

    Google Scholar 

  164. Y. Hasegawa, S. Hanasaki, J. Fujiwara and T. Wada, ‘Study of Chip Breaker-Development of New Chip Breaker Suitable for Wide Cutting Conditions’, Faculty of Eng., Osaka Univ., Japan (1986).

    Google Scholar 

  165. S. Valcuha and V. Geleta, ‘Methods of Design of Chip Shaper for Interchangeable Cutting Tips’,Strojirenstvi 37 (1), pp. 34–39 (1987) (in Czech).

    Google Scholar 

  166. H. T. Young, P. Mathew and P. L. B. Oxley, ‘Allowing for Nose Radius Effects in Predicting the Chip Flow Direction and Cutting Forces in Bar Turning’,Proc. Inst. Mech. Engrs. 201 (C3), pp. 213–226 (1987).

    Google Scholar 

  167. I. S. Jawahir and P. L. B. Oxley, ‘New Developments in Chip Control Research: Moving Towards Chip Breakability Predictions for Unmanned Manufacture’,Proc. Int. Conf. ASME, MI'88, Atlanta, Georgia, USA, April 1988, pp. 311–320.

  168. I. S. Jawahir and P. L. B. Oxley, ‘Efficient Chip Breaking at Reduced Power Consumption —An Experimental Analysis’,Proc. 4th Int. Conf. on Manufacturing Engineering, Brisbane, Australia, May 1988, pp. 97–102.

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Jawahir, I.S. A survey and future predictions for the use of chip breaking in unmanned systems. Int J Adv Manuf Technol 3, 87–104 (1988). https://doi.org/10.1007/BF02601836

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02601836

Keywords

Navigation